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X. On the Distribution of Surfaces of the Third Order into Species, in reference to the
absence or presence of Singular Points, and the reality of their Lines. By
Dr. Scuuiru, Professor of Mathematics in the University of Berne. Com-
municaled by ARTHUR CAYLEY, F.R.S.*
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THE theory of the 27 lines on a surface of the third order is due to Mr. CAYLEY and
Dr. SaLmon; and the effect, as regards the 27 lines, of a singular point or points on the
surface was first considered by Dr. SaLMON in the paper “On the triple tangent planes
of a surface of the third order,” Camb. and Dub. Math. Journ. vol. iv. pp. 252-260 (1849).
The theory as regards the reality or non-reality of the lines on a general surface of the
third order, is discussed in Dr. ScHLAFLI'S paper, ‘“An attempt to determine the
27 lines &c.,” Quart. Math. Journ. vol. ii. pp. 66-65, and 110-120. This theory is
reproduced and developed in the present memoir under the heading, I. General cubic
surface of the third order and twelfth class; but the greater part of the memoir relates
to the singular forms which are here first completely enumerated, and are considered
under the headings II., III. &c. to XXII., viz. IL. Cubic surface with a proper node,
and therefore of the tenth class, &c., down to XXII. Ruled surface of the third order.
Each of these families is discussed generally (that is, without regard to reality or
non-reality), by means of a properly selected canonical form of equation; and for the
most part, or in many instances, the reciprocal equation (or equation of the surface in
plane-coordinates) is given, as also the equation of the Hessian surface and those of
the Spinode curve; and it is further discussed and divided into species according to
the reality or non-reality of its lines and planes. The following synopsis may be con-
venient :— -
1. General cubic surface, or surface of the third order and twelfth class. Species L.
1,2,3,4,5.
II. Cubic surface with a proper node, and therefore of the tenth class. Species II.
1,2,3,4,5.
III. Cubic surface of the ninth class with a biplanar node. Species III. 1, 2, 3, 4.
1V. Cubic surface of the eighth class with two proper nodes. Species 1V,
1,2,3,4,5,6.
V. Cubic surface of the eighth class with a biplanar node. Species V. 1, 2, 8, 4.

* Dr. ScarirL1 authorized me to make any alterations in the phraseology of his memoir, and to add remarks
which might appear to me desirable. Passages in [], or distinguished by my initials, are by me, but I have
not thought it necessary to distinguish alterations which are merely verbal or of trifling importance.—A. C.
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194 DR. SCHLAFLI ON SURFACES OF THE THIRD ORDER.

VI. Cubic surface of the seventh class with a biplanar and a proper node.
Species VI. 1, 2.
VII. Cubic surface of the seventh class with a biplanar node. Species VIL 1, 2.
VIIL. Cubic surface of the sixth class with three proper mnodes. Species VIIL
1, 2, 3, 4.
IX. Cubic surface of the sixth class with two biplanar nodes. Species IX. 1,2, 3, 4.
X. Cubic surface of the sixth class with a biplanar and a proper node. Species X.
1, 2.
XI. Cubic surface of the sixth class with a biplanar node. Species XI. 1, 2.
XTI Cubic surface of the sixth class with a uniplanar node. Species XIL. 1, 2.
XIII. Cubic surface of the fifth class with a biplanar and two proper nodes.
Species XIII. 1, 2.
XIV. Cubic surface of the fifth class with a biplanar node and a proper node.
Species XIV. 1.
XV. Cubic surface of the fifth class with a uniplanar node. Species XV. 1.
XVI. Cubic surface of the fourth class with four proper nodes. Species XV1I. 1, 2, 3.
XVII. Cubic surface of the fourth class with two biplanar and one proper node.
Species XVII. 1, 2, 3.
XVIII. Cubic surface of the fourth class with one biplanar and two proper nodes.
Species XVIII. 1.
XIX. Cubie surface of the fourth class with a biplanar and a proper node.
Species XIX. 1.
XX. Cubic surface of the fourth class with a uniplanar node. Species XX. 1.
- XXI. Cubic surface of the third class with three biplanar nodes. Species XXI. 1, 2.
XXII. Ruled surface of the third order and the third class. Species XXIIL.
1, 2, 3.—A.C.

1. General cubic surface, or surface of the third order and twelfth class.

Art. 1. As the system of coordinates undergoes various transformations (sometimes
imaginary ones), it becomes necessary to adhere to an invariable system of a real mean-
ing, for instance the usual one of three rectangular coordinates. We shall call this the
system of fundamental coordinates, and define it by the condition that the coordinates
of every real point (or the ratios of them, if they be four in number) shall be real.
Consequently any system of rational and integral equations, expressed in variables of a
real meaning, and where all the coefficients are real, will be termed a real system (of
equations), whether there be real solutions or none, provided that the number of equa-
tions do not exceed that of the variables, or of the quantities to be determined. The
degree of the system will be the number of solutions of it when augmented by a suffi-
cient number of arbitrary linear equations; and such degree will generally be the pro-
duct of the degrees of the single equations. It is obvious that the system, whenever
its degree is odd, represents a real continuum of as many dimensions as there are
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independent variables; for instance, every real quaternary cubic represents a real
surface.

It is known* that on the surface of the third order there are 27 lines which form 45
triangles in such manner that through each line there pass five planes meeting the sur-
face in this line and two other lines, or say five triangle-planes. Lines not intersecting
each other may be termed independent lines, as far as a surface of the third order is
capable of containing all of them; the greatest number of such lines is four; that is to
say, in whatever manner we may choose two, three, or four not intersecting lines on the
surface, the system has always the same properties. Let two independent lines I. and
IL on the surface be given, and imagine any one of the five triangle-planes passing
through L. ; then IL. must intersect one of the two other sides of this triangle; in other
words, this triangle affords a line cutting both I. and IL., and a line cutting I. alone.
Hence it appears that there are five lines cutting both I. and IL, five lines cutting I.
only, five lines cutting IT. only, and ten lines cutting neither L. nor IL

[The theory of the 27 lines depends on the expression of the equation of the surface
in the form P—Q=0, where P and Q are real or imaginary cubics breaking up into
linear factors; in fact, if the equation be so expressed, it is at once seen that each of the
planes P=0 meets each of the planes Q=0 in a line on the surface, so that the form
gives at once 9 out of the 27 lines. The three planes represented by the equation P=0
(or Q=0) are termed a Trikedral of the surface.}

Art. 2. Prop. It is always possible to find a trihedral represented by o real quaternary
cubic.

The truth of this proposition is evident when all the 27 lines are real. But when
some of them are imaginary, these are conjugate by pairs. As the case when two con-
jugate lines intersect one another is fitter for our purpose, we begin with the other case
when two conjugate lines do not intersect each other.

The problem, then, of finding the five lines intersecting such pair of conjugate hnes
depends on a real system. Hence among the five lines there will be an odd number of
real ones; and imaginary ones, when existing, will be conjugate by pairs. Call the
given two independent and conjugate linesI. and IL., and the five lines intersecting each
of them @, d, ¢, d, e. If d and e be imaginary and conjugate, the plane containing I
and d will be conjugate to that containing II. and e, and these two planes will not
intersect in a line of the surface (for if they did, a line of the surface would unite the
intersection of II. and d with that of I. and ¢; and it is obviously a great loss of generality
if three lines of the surface meet in a point), But if all the five lines @, b, ¢, d, ¢ be real,
then—because they can be intersected simultaneously only by the lines I. and IIL, and

"because through each of the five lines there passes at least one real triangle-plane—
it must be possible to choose among all the real planes each passing through any one of the
real lines a, b, ¢, d, ¢, two real triangle-planes not intersecting in a line of the surface.

# See Cambridge and Dublin Math. Journ. vol. iv. p. 118, the orlgmal memoirs of Messrs. CAYLEY and SaLmoxN

on. the triple tangent-planes of the cubic. surface.
2E2



196 DR. SCHLAFLI ON SURFACES OF THE THIRD ORDER.

As to the easier case first mentioned, when there are on the surface two conjugate
lines intersecting each other, it is plain at first sight that they afford us four pairs of
conjugate triangle-planes not intersecting in a line of the surface.

Now whether we have two conjugate planes, or two real planes not intersecting in a
line of the surface, the third plane completing them to a trihedral is singly determined
by a real system and is therefore real; and hence the trihedral is represented by a real
cubic.

Art. 3. Prop. A real cubic surface of the twelfth class (or, what is the same thing,
without nodes) can always be represented by uvw-xyz=0, where both uvw and xyz are
real cubics breaking up into linear factors. :

Let AA+4B=0 be a cubic equation expressed in the fundamental coordinates with real
coefficients, A a numerical factor imaginary if possible, A, B cubics each decomposible
into linear factors, but A real and B imaginary if possible, and let #', B' be respectively
conjugate to A, B. Then (A—A')A+4B—DB'=0 must be an identical equation, and each
solution satisfying the system A=0, B=0 will therefore also satisfy B'=0. But it
would be a loss of generality if, through the nine lines in which the two trihedrals A
and B intersect each other, there should pass a third trihedral B'. Therefore we must
have A=, B=DB'; in other words, if one trihedral of a pair is represented by a real
cubic, its associate is also so, and the trihedral-pair equation does not imply any
imaginary numerical factor. We are therefore justified in asserting that a real cubic
surface (without nodes) can always be exhibited in one of these three trihedral-pair
forms wvw—+2y2=0; 1. u, v, w, «, y, z are all real; 2. u, v, w, x are real, Y is conJugate
to z; 3. u, x are real, v is conjugate to w, and y to z.

Art. 4. To save the reader the trouble of consulting my paper in vol. ii. of the
Quarterly Mathematical Journal, I will give here a scheme which serves to determine
and denote the twenty-seven lines. In space, only four linear functions can be inde-
pendent; any fifth one will be a linear and homogeneous function of these four linear
functions. Hence it is plain that in the identical equation

Au+Bv+Cw+Dr+Ey+Fz=
the coefficients are linear and homogeneous functions of two arbitrary constants; and of
course only their ratio is here of importance. The identical equation
Au(Bv+Dx)(Cw+Dx)+Dx(Au +Ey)(Au+Fz)=ABCuvw+DEFzyz

then suggests the propriety of making the six coefficients subject to the condition
ABC=DEF, because we have then a transformation of the original trihedral-pair form
into another like form. But the condition (being a cubic equation) has three roots,
according to which we may put

Sou =au+tbv+cw+tdr4-ey+-fz=0, abe=def;

Ealu=0’ albl I=dlel I; Eallu=0, Ilbllcll dll Us II

We denote the line (u=0, £=0) by uz, and so on for all the nine lines arising from
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the intersection of the two trihedrals www, #yz. Again, since there are twenty-seven
forms of the equation of the surface such as

au(bv4-dx)(cw-+dx)+ dx(aut-ey)(au+-1z)=0,

the equations au+dzr=0, dbv+4ey=0, cw-+fz=0 belong to a line of the surface which
we denote by 7, while (ux), (ux), (uz)" respectively represent the triangle-planes

autdo=0, du+do=0, du+d'v=0,
and so on. Now in the scheme of the nine initial lines

x Yy =z

w | ur wy uz

v | w v vz

w| wr wy wz
we may first perform all the positive permutations of the columns, and then deduce from
~ these the negative ones by permuting only y and z. In each permutation we keep

in view only the lines placed in the principal diagonal. We thus obtain the following
easily intelligible scheme

through wa, vy, wz pass?, I, I, through wx, vz, wy pass p, p, P
. , . —
» Uy, vz, wx ,, m, m, m, » Uz, W, wr , ¢ ¢, ¢

’ wz, vx, wy , n, w, 0, 5 wy, o, wz . r, r, 7.

The plane (ux) contains the lines ux, 7, p, and so on; and the plane containing I, m', n'
may be represented by (émn), and so on.

I do not think it worth while to show that the equation ABC=DEF, when explicitly
written, always has real coefficients, and that each of the cases hereafter coming into
consideration can be constructed, and that it therefore exists.

Art. 5. First case.—u, v, w, &, y, z are all of them real.

A. The cubic condition (ABC=DEF) has three real roots. It is then at once plain
that all the twenty-seven lines and all the forty-five triangle-planes are real. First
species, 1., 1.

B. The cubic condition has but one real root, to which let belong the coeflicients
a, b, ... Fach geometrical form then changes into its conjugate by merely permuting
the two accents’ and ". So the nine initial lines and the six lines I, m, n, p, ¢, 7
(together fifteen) are real, and the remaining lines are imaginary and form a double-six

(l’, m, u, 1)", gu, 1.")

!

d n n !
v, m', 2, o, ¢, 7

where any two corresponding lines are also conJugate Fifteen lines and fifteen planes
are real. Second species, 1., 2.
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Art. 6. Second case.—y and z only are imaginary, and therefore conjugate.

A. The cubic condition has three real roots. Each form changes into its conjugate
by merely permuting y and z. Therefore, in the trihedral-pair scheme, only the first
column contains real lines, the two other columns are conjugate; and as to the eighteen
remaining lines, their two schemes are conjugate in the above-mentioned order. Three
lines and thirteen planes are real; for there is one real triangle through each side of
which there pass, besides the plane of the triangle, four other real planes. Fourth
species, 1., 4.

B. The cubic condition has but one real root to which let belong the coefficients a, 8,
... Each form changes into its conjugate one by permuting at once y, z and the two
accents ' and ". Three lines and seven planes are real. The real lines form a triangle,
through each side of which there pass, besides the plane of the triangle, two other real
planes.  Fifth species, same as third case B, infra.

Third case.—wv is conjugate to w; y to z; and w, & are real.

A. The cubic condition has three real roots. Each form changes into its conjugate
by permuting at once v, w, and y, z. The three above-mentioned schemes (each of nine
lines) change hereby respectively into

&'x" ’L&.—Z— {L‘y‘ l ll b/ P p! 19”"

wr wz wy | n oo A" b o o

EE,’&“@ m m mn gg!gllﬁ
The comparison shows that only uz, 1, U, 1", p, p, p" keep their places, and are therefore
real. Of the planes, only u, &, (ux), (ux), (ua)' arereal. Seven lines and five planes are
real ; namely, through a real line there pass five real planes, three of which, (u), (ua),
(uz)", contain real triangles. Third species, 1., 3.

B. The cubic condition has but one real root. To find the form conjugate to a given
one, we must at once permute v, w, also 7, z, and lastly the two accents ' and . The
three schemes of lines by this process become

u——.xa‘z_@jllﬂllzppll-pl
we we wy | no oo A | 7 7 o
v vz vy | o m om' w | ¢ ¢ ¢
Only A p keep their places, and therefore are real. Besides the planes u, # (uz), also
the planes (Imm), (Inm), (pqr), (prg) are real. The three real lines form a triangle,
through each side of which there pass two more real planes. Fifth species, 1., 5.
Art. 7. How many kinds of nodes can exist on a cubic surface?

Considering in the first instance the theory of an ordinary node or conical point, let
us imagine a surface of the nth order with a node, at which we are allowed to place

the point of reference %* Let then an arbitrary line be given,;through which tangent,

* As to this mode of expression, see foot-note to art, 8.—A. €,
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planes to the surface are to pass, and through this line draw the planes of reference z=0
~ (through the node) and w==0 (not passing through the node). The equation of the
surface will then take the form

F=Pw"*4+Qu"*+Rw"*+&c. =0,
where

P=(z, y, 2)*, Q=(z, y, 2)>, R=(x, y, 2)*, &c.,
and the points of contact of tangent planes passing through the given line (2=0, w=0)

must satisfy the conditions %—z: 0, %—g:O. In the proximity of the node the system of

oP_ . 9P

the three equations reduces itself to P=0, 3:=05 -ay=0 (or, what is the same thing;

%2= 0, %g =0, z %g: 0), if none of these equations be a necessary consequence of the

other two. The node %} then represents two solutions, because the equations are

respectively of the degrees 2,1, 1 [or, what is the same thing, among the tangent planes
through the line the plane passing through the node counts for two tangent planes; that

is, the class of the surface is diminished by 2]. The exception (%—g =0, %—5:0, z=0>

is inadmissible; for should the plane z=0 touch the cone P=0, the line (z=0, w=0)
would not be arbitrarily chosen. The only possible exception is when the three equations
BP_O BP_:_.O aP:O

dz— ¥y’ o2

can be simultaneously satisfied. Consequently so long as the nodal cone P=0 does not

break up into a pair of planes, there are two solutions, or the class is diminished by 2.
In the excepted case, where the nodal cone P=0 breaks up into a pair of planes, we

may assume P=ay (or P=2? to be discussed in the sequel); and since now the equa-

tions 2y=0, &= 0, y=0, are no longer independent, we must go on to consider also

Q=0z"+4+1Lz"4+Mz+N,

L=(z,9), M=(z,y), N=(=, y)a
For the sake of shortness, let w=1. We then have
Yz + LA+ Mz 4N+ &e.=0,
L M  ON
Y +%; z“’+%;z+%; +&e.=0,

oL , @.M @.12 =
¢ 35,73, vty T&e=0,

where

and unless the constant ¢ vanish, the system (in the proximity of the nodé) reduces itself
to =0, y=0, 2*=0; that is to say, a biplanar node, in general, counts for three

solutions, or diminishes the class by 3.-
Next it remains to put =0, L=a2-+by, when the system becomes

e4b24....=0, yta?+....=0, ay+(extly)*+...+K4...=0,
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where Kz* is borrowed from R; and the last equation of the system reduces itself by
means of the others to (K—ab)z*+-....=0. The node here unites four solutions, unless
K —ab should vanish; that is to say, if the nodal edge (=0, y=0) lie on the cone
Q=0, the biplanar node lowers the class of the surface by 4, unless the portion of the
surface surrounding the node be, in the first approximation, represented by the form
(x+082*)(y+az®)+ terms of the fifth order in regard to z, =0.

The further supposition would be K—ab=0; but let us now assume a cubic surface,
that we may have K=0, and therefore ab=0. Selecting the case 4=0, we put

Q=azz*+(b2*+cay+dy*)z+N,
z+(ca+2dy)z+...=0, y+az’+....=0,

or neglecting higher orders than here come into consideration, y=—az’, #=2adz’,
whereby F=0 becomes a?dz*+...=0, so that the system is reduced to x=0, y=0,
a’dz*=0. That is to say, if one of the nodal planes touch the surface along the nodal
edge, the biplanar node lowers the class of the surface by 5, unless the cone Q=0 have
that line of contact either for a double line (if @=0), or for a line of inflexion (if d=0).

The exceptional supposition then to be made separates itself into ¢=0 and d=0.
But a=0 would cause all the terms of F to be of the second degree, at least in respect
to &, 9, so that the surface would have (=0, y=0) for a double line. Assuming then
d=0, we may put

whence

Q=2z2+(ax’+bzy)z+cx*+ da*y +exy’ -+,
when the system reduces itself to =0, y=0, —fz°=0. 'That is to say, if one of the
nodal planes osculate the surface along the nodal edge, the biplanar node lowers the
class by 6. Here we must stop; for if we suppose f=0, the cubic F becomes divisible
by .
‘We go on to the case where the nodal cone becomes a pair of coincident planes, or
say where we have a uniplanar node. The equation of the surface is

F=2aw+ay’+ 8by*s+ 3cyz* + dz* +a( ey’ +fyz+92*) +a*(hy +-jz) + Ka*=0.
For indefinitely small values of «, %, 2, the equation g—f;:o causes 2 to be of the second

order in respect to y, 2. The system of conditions for the point of contact (in the
proximity of the node) of a tangent-plane passing through the line (=0, w=0) reduces
itself therefore to

=0, ay’+2byz+c*=0, ay’+ 3by’z+3cyz*+dz*=0,
unless the discriminant of the last-mentioned cubic should vanish. Except in this case,
the system shows that the node counts for six solutions of

—_o OF_, 9F_
(F_.o, 2 =0, ,By_o)’

or, what is the same thing, that a uniplanar node lowers in general the class by 6.
But if the binary cubic ay*+ 88y*2-+ 3cyz*+ dy* contain a squared factor, we may denote
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this by 2?, and then write
F=a*w+ay’+ 0yz+ (e’ + dyz+-e2*)x=0
for the equation of the surface; for it is plain that we are allowed to disregard the
subsequent terms divisible by 2°. On forming the equation in plane-coordinates, it is
immediately seen that this surface is of the fifth class, unless 6=0; that is, in the
general case, the class is diminished by 7.
Lastly, if $=0, then we have
F=a2*w+ oy’ 4 (e’ +dyz+e2*)r=0;
and by forming the equation in plane-coordinates, the surface would be found to be of
the fourth class, that is, the class of the surface is diminished by 8. '

A closer discussion of the last two cases is reserved for a fit occasion.

In the whole we are to distinguish eight kinds of nodes on the cubic surface: 1, the
proper node, which lowers the class by fwo; 2, the biplanar node, where the nodal edge
does not belong to the surface and which lowers the class by ¢hree; 3, the biplanar node,
where a plane different from both nodal planes touches the surface along the nodal edge
and which lowers the class by four; 4, the biplanar node, where one of the two nodal
planes touches the surface along the nodal edge and which lowers the class by five ; 5, the
biplanar node, where one nodal plane osculates the surface along the nodal edge and
which lowers the class by siz; 6, the uniplanar node, where the nodal plane intersects
the surface in three distinct lines and which lowers the class by six; 7, the uniplanar
node, where the nodal plane touches the surface along a line and which lowers the class
by seven; 8, the uniplanar node, where the nodal plane osculates the surface along a
line and which lowers the class by eight.

Art. 8. On the case of two nodes on the cubic surface.

Let f'be the quaternary cubic of the surface, P, Q the symbols* of two different nodes
on it; then P*f, Q’f will identically vanish. If now R be the symbol of any third point,
the symbol «P+4BQ-+yR, where «, 8, y denote arbitrary multipliers, will belong to a
point in the same plane with the points P, Q, R, and the equation

(«P+BQ+yR))f=6ByPQRf+ 37" (P +BQRS+yRif =0

will represent the section of the surface made by the plane. Then if the point R satisfy
the condition PQRf=0, the equation will become divisible by %*, that is to say, ‘the
equation PQRf=0, in respect to the elements of R, represents a plane touching the
surface along the line joining the nodes P and Q, and besides intersecting it in a line
represented by "

3«PRY 4+ 8BQR*Yf +yR¥} =0,
if here e, 3, y are regarded as planimetrical coordinates, and the point R as fixed. In
the sequel I shall sometimes term the former line awis and the latter transversal.

* If &', ¢/, 2!, w' are the coordinates of a node, ', %', 2/, w' current coordinates, then the symbol P of the node
is =2'9,+y'Q,+20,+wdy, and P is ==P/f!= (20, + ydy + 20+ w0, )f’, which vanishes identically, that is
independently of @, y, 2, w, in virtue of the equations 9,,f'=0, &oc. satisfied at the node.—A. C.

MDCCCLXIIT. 2F
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If Pw+Q=0, where P=(2, 7, 2)’, Q=(«, y, 2)’, be the equation of a cubic surface
with a node, I shall call the six lines represented by the system P=0, Q=0 nodal rays. .
They belong to the surface, and it is plain that two of them at least must coincide in
order that the surface may have another node, and this will lie on the line uniting two
or more rays of the first node.

I1. Cubic surface with a proper node, and therefore of the tenth class.

Arxt. 9. The equation of this surface can always be thrown into the form Pw-4Q=0,
where P=(z, y, 2)’, Q=(«, g, 2)*.
Let 7 be a linear and homogeneous function of z, y, z, then

P(w—1)4+Q+IP=0

is the same equation. But we may in fifteen different ways dispose of the three coeffi-
cients in /, so that Q[P breaks up into three linear factors, and are therefore allowed
to write
o=(ax®+by*+c2*+ 2dyz+2eza-+2f xyyw+2ay2=0
as an equation of the surface, where, for the sake of shortness, the ternary quadric
a2+ &c. of the nodal cone may be denoted by %, and the derivatives of 1y by X, Y, Z.
Again, let
A=abc—ad’—be*—cf*+2def, A=bc—d’, B=ca—e’, C=ab—f>,
=¢f—ad, E=fd—be, F=de—cf,

and determine the constant A by the quadratic equation (aA—D)*—BC=0, then x-2ryz
will break up into two linear factors, and ¢ =(y+ 2ryz)w-+2(x—rw)yz will be a trihedral-
pair form of the surface. Its particularity is sufficiently determined by the condition
that an edge of one trihedral intersects an edge of the other trihedral, the point of
intersection being the node. I wished only to notice the connexion of such form with
- the presence of a proper node, yet will no longer dwell upon it, because I prefer to select
hereafter one of those ten trihedral-pairs in which no plane passes through the node,
for investigating by its help the position of the 27 lines. .

Let p, ¢, 1, s denote plane-coordinates such that pa'4-gy'+rz'4sw'=0 shall be the
equation in point-coordinates &/, ¢/, Z, w' of a tangent plane to the surface p=0. To
find then the reciprocal equation of the surface, we are concerned with the system

09,09 0¢ 0¢
6=0, Suidyios pw LIS

where the first equation may also be replaced by I+sw=pa+qy-+rz+sw=0. The
equations

15, =Xw+yz, w3,=Ywtas, 3;=Zwtay, §5,=x
lead to the system
Ppx+20X—2sy2=0, gx+21Y—2s22=0, »ryx~+2lZ—2s2y=0,
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the equations whereof are the derivatives of
Ix— 2sxyz(== (px+qy+-rz)x— 2§xg/z) =0
with respect to @, 9, 2. The reciprocal equation of the surface therefore is of the form

Q=0, where Q is a decimic function of (p, ¢, r, s), which multiplied by s* is the discri-
minant of the ternary cubic

(3ap)a®+3. (ag+2fp)a*y+3. (ar+2ep)a’s+ 3. (bp+2fq)xy
+6.(dp4-eq+fr—s)zyz+3. (cp +2er)22* +(3bg)y*+8. (br+2dg )’z
+3.(cqg+2dr)yz>+(3cr)e’.

Hence to work out the decimic in question we may use the invariants of the fourth
and sixth order which Dr. SsLmMoN * denotes by S and T, only that we replace the latter
notation by —8T. Putting, then,

®P=Ap*+Bg*+Cr*+2Dgr+2Erp+2Fpg, $d®=Pdp-+Qdg+Rdr,
t=dpteq+fr, U=adgr+berp+ofpg, V=2Apgr—agrP—brpQ—cpqR,
W = a?Agr*+ I'Brp 4 *Cp* 4 2pgr(beDp 4 caBg 4 abFr),
L=s—2{s—®, M=Us+V, N=2abopgrs+W, S*—T*=108sQ,
we find
S=I12—12sM, T=I1°—18sLM—54s’N,
Q=I*N-4I12M?*—18sLMN —16sM*—27s*N*
=2abepqrs’+ {abeZag®r®+2pqr3be(2¢f —Tad)p} s°
+2{3bc*(ef —3ad)p’q*+pgr3be(—3abe+ 21ad?+be* +cf *—12def )p°
- 2pqrSa( —8abod +16bcef—6d(be+of )+ 2def )qr} s |
OO+ )s
— AD*(og* —2dgr +br*)(ar*—2erp +op®)(bp* —2fpg+og’),

and Q=0 is the reciprocal equation of the surface.
If —16H denote the Hessian of the cubic ¢, then

H=Ayw’+2(x3Dx— 3 Axyzyw—3a’x* + 23y’ + 4ayz2(ad+t-of )v;
the spinode curve therefore is represented by the system
0=0, 8Axyzw—~8zyzZadr+3a’s*—23bcy*s*=0;

hence it is a complete curve of the twelfth degree, and has the node of the cubic surface
for a. sixfold point, where the six nodal rays are tangents to the curve.
Art. 10, Starting from a trihedral-pair form www--2ys=0, where no four of the six

*. Higher Plane Curves, pp. 184 and 186.
2F2
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planes have a point in common, and letting 7B be a linear differentiation symbol signify-
ing that the differentials of the four fundamental coordinates may be replaced by arbitrary
quantities (JB=w0,+ (39,409,409, if for the moment (2, y, z, w) are the fundamental
coordinates), we see that at the node the differential equation JB(wvw+ayz)=0 ought
not to be different from the general identical equation
ABu—+BBv+ CBw+ DIBx+ EfBy -+ FiBz=0;

hence the coefficients of the differentials in both equations must be proportional. But
since in the former the coefficients vw, ww, wv, yz, xz, a4y satisfy the equation

VW UW . UV =YZ . XZ . LY,
or, which is the same thing,

(wow—+zyz)(uvw—axyz)=0,

the coefficients in the latter differential equation belong to one of the roots of the well-
known cubic condition. Let them, for instance, be o/, ¥, ¢, @', ¢, f*; then in consequence
of the equation of the surface the proportions in question become

du=lv=cw=—dr=—dy=—f"z;
or, because without any loss of generality (since the linear functions wu, v, ... imply
arbitrary numerical factors) we may replace ¢/, ¥/, ¢, &', ¢, f' by 1,1,1,1,1,1, more simply
U=V=W=—T= —y=—2
at the node. Hence, and from the first and third identical relations, we get

a+b+0=d+e+ﬁ abo_—'dﬁiﬁ, a’,+b”+0”=d”+6,l Jl’rl, a'lb!lcll_:dllelllf’l.’.
But we may put '
d'=nra+w, V'=r4p, &c.
and we then obtain

(be+ca+ab— ef —fd—de)n*n=0.

The factor within the brackets, if vanishing, would require one of the six cases such as
a=d, b=e, c=f, and leave A, » indeterminate. Avoiding so great a restriction, and
keeping to the proper meaning of the auxiliary cubic condition, we find that it has two
equal roots A=0, and a single root p=0. Consequently the constants corresponding
to the single root are @, 0, ¢, d, ¢, f, and satisfy the equations

a4-0+c=d+te+f, abe=def;

the constants in the accented sets are all of them equal to unity. Hence the line ' coin-
cides with ", m' with m', and so on, and all these six pairs of coincident lines pass
through the node. It may also be observed that they formed in the general case a
double-six, and that now the corresponding lines (in both sixes) also coincide. Moreover,
since the three independent lines 7, m/, #' (in the general case) are intersected by each
of the three independent lines p', ¢", #’, all these six lines lie (in the general case)
upon a quadratic surface; and now that all the six lines meet in a point, the quadratic
surface must degenerate into a cone. Let

P=(v+a)(wta)—(v+y)(v+2), Q=(u+ta)(uty)(utz),
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then
uP +Q=uz(utv+wta+y+2)+(vowtayz);
and because u+v+w-+a+y+2=0 is the second (or third) identical relation, and
wow—xyz=0 the equation of the surface, the latter is changed into uP-+4Q=0, which
form shows the nodal cone P=0, the equation of which may also be exhibited under
the symmetrical form
ow Fwu-uv—yz—ze—ry=0.

Art. 11. Distribution into species.—1It is plain that a single node of a real cubic surface
cannot but be a real point. We may therefore draw through it three (real) fundamental
planes (which call #, 7, z) and take the fourth plane at pleasure (call it w); the equa-
tion of the surface then is wP-+Q=0, where the functions P, Q contain only &, ¥, z, and
therefore represent cones respectively of the second and third orders; and it is obvious
that as well in P as in Q all the coefficients will be real. Hence as to the six nodal rays
(P=0, Q=0), all of them may be real, or four, or two, or none. So we might distin-
guish four species of the cubic surface with a single proper node; but in the last of the
mentioned cases (when the node is an isolated point of the surface) the cone P=0 may
be real or imaginary. Let us therefore distinguish five species.

First species, 11. 1. All siz nodal rays are real.—The surface is constructed, when we
assume six constants and six linear functions of the fundamental coordinates, all of them
real, and satisfy the equations

at+bto=d+te+f, abe=def, uwtvtwta+y+z=0, eutbv4cw+dr+tey+fz=0,
where b¢+ca+-ab—ef'—fd—de must not vanish. Then wvw-a2yz=0 is the equation
of the surface. Not passing through the node, there are fifteen simple real lines, which
form fifteen triangles, each line being common to three simple triangle-planes. Of the
fifteen planes to be twice counted, each contains one of the simple lines and two nodal
rays. This species constitutes the transition from the first to the second species of the
general surface *.

Second species, II. 2. Only four nodal rays are real—While we keep to the same
system of equations as before, it is possible to dispose of the constants and linear func-
tions in such manner that «, b, ¢ are respectively conjugate to d, e, f, and u, v, w to 2, y, 2.
Then by permuting ¢ and —¢, the three schemes |

wow ow [ L@ V) [ p @ D)
w vy v | om (W ow) | g (¢ ¢")

")

=
—~
=~

we wy wz n (W n")
change into N

ur v W @ Uyt p (@ 9

uy wy | n (W ') | ¢ (¢ ¢')

uz vz w2 m (m m') r (¥ 1)

# Viz, from I. 1 to 1. 2, and so in other cases where the species of the general surface are referred to—A. C.
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Hence the four nodal rays (I, '), (p', "), (¢, ¢"), (v, +") and the remaining ones
(m, m"), (@, n") are conjugate. Of the simple lines seven only, viz. wz, vy, wz, I, p, ¢, r
are real and form three real triangles which have the line 7 in common. Besides these
three simple planes there are seven real planes to be twice counted, each of which
passes through the node and one of the seven real simple lines. When the two equal
roots of the cubic condition separate themselves into real roots, the four real nodal rays
become eight real lines, and the surface changes into the general one of the second
species. In the other case, only the plane passing through the two conjugate nodal rays
resolves itself into two real planes (in the former case into two conjugate planes), so
that there arises a general surface of the third species.

Third species, 11. 8.  Only two nodal rays are real.—It is possible to satisfy the
above system in such manner that the constants @, d are real, & conjugate to ¢, and ¢ to f’;

again, that the planes w, o are real, v conjugate to w, and y to z. By the change of 4
into —¢ the three original schemes then change into

we wz o owy | 1@ V) | p (@ P

wr wz  wy no (@ W) | (P o)

w o oy | om (o) | g ({ ¢)
The two nodal rays (7, I), (p', p") alone are real; and (not passing through the node)
only the lines wa, /, p, forming a triangle, are real. Besides the three simple planes u,
@, (uz) the onlyreal planes are the three planes (to be twice counted), which pass through
the node and through one of the real simple lines. This case forms the transition from
the third to the fifth species of the general surface.

Fourth and fifth species, I1. 4, and I1. 5. Three pairs of conjugate nodal rays~The
above system is compatible with the condition that ¢ shall be conjugate to f; and the
plane 7 to 2, while all the other constants and planes are real. Then in the first of the
three original schemes of lines the second and third columns interchange, and the second
and third schemes interchange. Hence the nodal rays (7, "), (w/, m'"), (v, n") are
respectively conjugate to (', "), (¢, ¢"), (', "), and of the simple lines only uz, va, wa,
forming a triangle, are real. Of simple planes only the seven a; w, (uz); v, (vz);
w, (wx) are real, and of planes to be twice counted only those joining two conjugate
nodal rays, therefore three in number. The case is intermediate between the fourth
and fifth species of the general surface.

To decide the question, when is the nodal cone real or not? We throw its quadric
P="v+z)(w-2x)—(u-+y)(u+2z) into the form »
—(d—=b)(d—)P={(d—c)(v+2)+(a—f )u+y)} {(d—0)(v+2)+(a—e)(u+2)}
H(@=0b)(d—0)—(a—e)a—f))(w+y)(u+t2).
On the right-hand side the first term is positive as a product of two conjugate factors,

and in the second term (u-y)(w-2)is positive for the same reason, Hence the cone is
real when (d—b)(d—c)—(a—e)(a—f') is negative; in the opposite case it is imaginary.
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But if we eliminate ¢ and d by the help of the equations
a+b+c=d+e+f, abe=def,

(b—e)(b—f)c—e)(e—f): (be—ef ),
where the numera*~r is positive, since its factors are conjugate by pairs. Thenodal cone
is therefore real when the denominator bc—ef is negative (fourth species, IL 4), but
imaginary when be—ef is positive (fifth species, IL. 5).

the expression becomes

II1. Cubic surface of the winth class with a biplanar node.

Art. 12. The equation ayw--2°=0, where, in the proximity of the node, only w remains
finite, when discussed under both suppositions of #, y being real or conjugate, gives a

preliminary view of the biplanar node at the point % A plane turning about its edge

(#=0, y=0) cuts the surface in a curve with a cusp, which changes its direction into
the opposite one whenever the turning plane has passed one of the two real nodal
planes; or always keeps its direction if the nodal planes be conjugate, so that in the
latter case the surface here terminates in the form of a thorn [viz. in such a form as is
generated by the revolution of a semicubical parabola about the cuspidal tangent].

The equation of the surface is wow-+Q=0, where u, v are linear functions and Q a
cubic one of #, y, z. Denote the three nodal rays (v=0, Q=0 by 1, 2, 3, and the three
(v=0, Q=0) by 4, 5, 6. Then each combination such as (14, 25, 36) gives a deter-
minate position of the plane w=0, in virtue of which the cone Q breaks up into three
planes. Keeping to the order of 1, 2, 3 and permuting only 4, 5, 6, we see there are
six such transformations. But whenever Q=xyz, the surface contains a simple triangle
(w=0, 2y2=0); and it is also easy to see that the three positive permutations give
one trihedral, and that three negative ones give the other trihedral of a trihedral-pair
where no four of the six planes meet in a point, the only possible trihedral-pair of such
kind.

If in art. 9 we put x=2(la+my+nz)(lz+m'y+n'z),

I, my n | =rpFupgtwr=c, U (mn'+m'n)gr=v, Sllrgr=-,
I ml, o
pq T
then we have '
A=—2% B:-,;P, C=—, D=—w, E =—n, F=—7\@, v
A=0, ¢ =3(mn'+mn)p, U=2v, V=20¢, W=—44? L=s'—2¢s+}0°,
M=2(vs+0ov), N=4(4lmnlm'n'pgrs—-?),
D — dlmnlminpgr{Li— 365L(vs+ o)+ 21654 — 432Imnlninlpgrs*}

L2 {8(0* —?) - 2003 + 2642} 4 B6 Ll (05 o) — 32(vs b JP— 108 e
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The first term of the expression according to the descending powers of s is
4imnl'm'n'pgrs®,
and the last is
— Ao (ng —mr ) (Ir — np )(mp —lg ) (7 g—m'r ) (Ur —n/p ) (m'p—14q).
The system
(le+my +nz)(lae+m'y+n'z)w+ayz=0,
3P0t —2Zmm'nny*2 — day2 310 (mad +m/n)z=0
represents the spinode curve, which is therefore a complete curve of the twelfth degree
and has the node for an eightfold point, where the tangents are determined by the
system
(2lx)(20x)=0, 2Ny*2*—2ayz2uva=0,
since the cone drawn from the nede through the spinode curve may also be thrown into
the form
, 2l 2l {302 —Z(ma +min)yz} 4+ 20y — 2xy2Spwar=0.

Art. 13. Let us represent by uvw-2y2=0 the only possible trihedral-pair no plane

of which passes through the node, and considering this as a particular case of art. 10, let
utv+w-t+a4y-+2=0
be that identical relation which answers to the two equal roots which we know must
exist of the cubic condition, and
Au+Bv+4Cw+Da+Ey+Fz=0

any other identical relation. Then the coefficients in the relation corresponding to the
single root of the cubic condition will be

a=rA4+w, b=rB+pu, &c.;
and since this condition

(2A+ @) (1B~ w)(AC ) — (WD) (AEA- ) (AF +12) =0
must be divisible by 2?% it follows
A+B+C=D+E+F, a=(A—D)(A—E)(A-F), &c., d=(A—D)(B—D)(C—D), &c.
Again, at the end of art. 11 we had a form of the nodal cone P containing only the three
variables v+, -y, w4z, in respect to which the discriminant of P is

(b—d)(c—d)—(a—é)ie—s) _SBC—ZEF
G6—d)y = @®-Dy

Now in order that the nodal cone may break up into two planes, we must have
BC+4CA+AB=EF+FD-}DE,

which reduces the cubic condition to
(ABC—DEF)»*=0.

ABC=DEF

Rejecting the solution

as giving rise to
A=D. B=E. C=F
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for instance, and thus bringing

v+2=0, v4+y=0, wt+2=0
into one and the same plane, we infer that if a trihedral-pair form, explicitly not
singular, belong to a cubic surface of the ninth class, the cubic condition inherent to

such a trihedral-pair must have three equal roots.
Reciprocally, let uvw-+42y2=0 be the equation of the surface, and

vt+vtw+ar+y+2=0, Au4Bv+Cw+ Do+ Ey4Fz=0
identical relations, where
A+4+B+C=D+E+F, BC+CA+AB=EF+FD+DE,
but where ABC—DEF is different from zero, then we have a set of proportions such as

A—E_ C-D,
B—D_A—F”
and since at the node u=v=w=—&=—y=—z, the nodal cone is represented by

0
(%+%+%}—%—%——55> (vvw—azyz)=vw-+uw Fuv—yz—zx—ay=0.

But because the equation
{(B—E)(u+2)—(A—D)(v+y)} {(B—F)(u+a)—(A—D)(o-+2)}
=[(B—E)(B—F)—(A—D)(C—D)J(u+a)"
—(A+B-+0—D—E—F)A—D)(u+e)(v-+y-+2)
+(A—D)[(A—=D)(v+42v)+Cu+2)](v+v+wt+2+y42)
— (A —D)(u+2)(Au+Bv+Cw+Dar+Ey+Fz)
—(A—D)y(vw+uwtuw—yz—az—2y)
is eaplicitly identical, therefore the equation
—(A=D)(vwtwu+uv—yz—z20—2Y)
= {(B—E)(u-+a)—(A—D)(v+9)} {(B—F)u-+e)—(A—D)(v+2)}
is identical in respect to the fundamental coordinates; in other words, the nodal cone
breaks up into a pair of planes. The nodal edge may be represented by

u=s+At, v=s+DBt, w=s+Ct, v=—s—D¢, y=—s—FE¢, 2=—s—F%,

where s, ¢ denote independent variables.

. Now it is plain that the equation w-2=0, for instance, represents at once the three
planes previously denoted by (ux), (ux), (ux)", wherefore now the three lines 7, 7, 7
coincide, and so on. FKach of the six nodal rays thus unites three (independent)
lines of the surface; only the lines www=0, 2yz=0 are simple lines. We have in all
6-:349-1=27 lines. One nodal plane unites all the six planes such as (Imn), and the
other all the six planes such as (pgr). Of the nine planes joining any ray of the one
nodal plane with any ray of the other, each unites three planes such as (wx), (uz), (uz)";

MDCCCLXIIL. ‘ 26
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only the six planes of the trihedral-pair here chosen are simple triangle-planes. There
are in all 2:64+9:3+46:1=45 triangle-planes.

Art. 14. There are four species.

First species, 111. 1.—u, v, w, &, y, z are real. Everything is then real.

Second species, TI1. 2.—u is conjugate to x, v to y, and w to z. Both nodal planes
are real; one of them contains the real ray [ and the two conjugate raysm, n; the other
nodal plane contains the three real rays p, ¢, 7. Of the nine simple lines three only,
ua, vy, Wz, are real.

Third species, 111. 8.—u, & are real, v is conjugate to w, y to z. Both nodal planes
are real, and each of them contains a real and two conjugate rays; for [ and p are real,

and m is conjugate ton, gtor. Of the nine simple lines one only, wa, is real. :
Fourth species, I11. 4.—u, v, w, & are real, y is conjugate to z. The two nodal planes
are conjugate; for [, m, n are respectively conjugate to p, ¢, 7. Of the nine simple lines
three only, forming the triangle (=0, wow=0), are real.
The enumeration is complete, because all cases that can happen in respect to the
nodal rays are exhausted.

IV. Cubic surface of the eighth class with two proper nodes.

Art. 15. From art. 8 we already know that the line joining the two nodes, or aais,
unites two and the same rays of each node, and that there is a singular tangent plane
which touches the surface, and therefore also each nodal cone along the azis, and besides
intersects the surface in a single line which we have termed the ¢ransversal. Since then,
besides the axis, each nodal cone has four raysnot passing through the other node, there
are in all ten nodal rays which represent twenty lines of the surface (considered as
though it were general), so that there remain only seven simple lines, one of which is
the transversal above mentioned. Because this transversal is not intersected by the
eight disengaged nodal rays, but only by the axis, that is by four lines, it must meet all
the six other lines, and will therefore form with them three triangles. Besides such
triangle, there pass through each of the six lines four other planes, which are of course
those passing through one or the other node, each of them counting for two triangle-
planes. Again, a plane through the axis and a disengaged ray of one node must intersect
the surface in a third line, which cannot but be a disengaged ray of the other node.
Such plane counts for four triangle-planes; for any one of the four disengaged rays of one
node, since it determines with each of the three remaining rays three triangle-planes,
must determine with the axis two such planes; and because it is made up of two inde-
pendent lines of the surface, the two planes must be twice counted. As to the singular
tangent plane, it counts twice, because through the transversal there already pass three
simple triangle-planes. The surface thus has a line representing four lines, viz. the
axis; eight other nodal rays, each representing two lines; and seven simple lines, viz.
the transversal and the remaining sides of the three simple triangles standing upon it;
in all 1-4482471=27 lines. Again, the surface has four planes each representing
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four triangle-planes’ of the surface, viz. those passing through the axis and one ray of
either node; thirteen planes each representing two triangle-planes, viz. the singular
tangent plane and the twice six other planes each of them through two disengaged rays
of the same node; lastly, the three simple triangle-planes passing through the trans-
versal; in all 4-4+413-2+43-1=45 triangle-planes.

- 'We proceed now to reduce the equation of the surface in question to its simplest
form. Let =0 be the equation of the singular tangent-plane, and let the plane y=0
pass through the axis, while the planes z=0 and w=0 touch respectively the nodal cones
in lines belonging to the plane y=0, then the term yzw and those divisible by 22, w?, %z,
aw will disappear, and we may therefore write

xzw-+y*(z+w)+ax’ 4 402y 4 6cxy®+ 4dy*=0.
But this cubic if multiplied by # becomes

(@a4-9?Y(aw+9?) — (y—da )+ 6(c+ Py +4(b— &)y + (a+-d*)ar,
while

vetyp=a(+42dy — F2)+(y— da), aw+y*=a(w+2dy— da)+(y— da).

Now it will be readily seen that the equation of the surface can in but one way be
reduced to the form

w2w 4y (2 +w)+ ax® +bay+ cxyr =0,

where we might also put unity instead of one of the three constants a, 6, ¢. 1In respect
to the fundamental coordinates, the equation implies seventeen constant elements, as

it should do, since the two nodes take away two disposable constants from the full
number 19.

Let us attempt to form the equation reciprocal to this. We have
6p=z'w+3wx2+26wy+oy2, 0g=2y(z+w) -+ ba*-+2cxy, 01"—_?xw+y2, Is=axz+y".
Putting then ,
p=pa’+gry—(r+s)y’s x=or'+ba%y+ca’y—y’,
regarding p, ¢, 7, s in respect to %, % as constanfs, and eliminating #, w by the help
of the original equation of the surface, we find

- 0¢_0x ,0¢_0x
Prs= - a_aZ'—S«;” —6!—/_3_3/,

whence 0p=2y, 20rs=—¢; and lastly, on eliminating 9;
9 o4 0/
55 (P +H4rs)=0, 5. (¢"+4rsx)=0,
that is to say, the discriminant vof the binary Quartic
(pa*+qay—(r+s)y’) +4rs(aa'+-ba*y + e’y —y)

‘must vanish, and divided by 7%s* it will give the reciprocal equation required..
262



212 DR. SCHLAFLI ON SURFACES OF THE THIRD ORDER.

Denoting the Hessian of the primitive cubic by 4H, we have
H=azw(z+4w)+y*(z—w)*+ca’zw — (2-+w)(3ax’+ 3bay -+ 2cay?)
+ (82— 3ac)x*+boa’y+ (¢*+12a)2°y 4 4bay’.
Hence arises for the spinode curve the system
a:zw+y2(z+w)+ax3+bx2g/+cxy2=0,l
—dyPow — A(z+w)(aa* 4 bay +cxy?) + (1 — dac)at+12aa%y* + 4bay*=0,
where the axis (=0, y=0) counts for two solutions; therefore the spinode curve is a
partial curve of the tenth degree, and each node of the original surface is a quadruple
point of the curve, the nodal rays at such point being tangents to the curve.

Axt. 16. We proceed to determine the lines and triangle-planes of the surface. The
transversal is (#=0, z2+4w=0). The nodal cones are wz-+y*=0, 2w-+7’=0; besides
touching one another along the axis, they intersect in a conic the plane of which is
z—w=0. This plane and the transversal therefore cut the axis harmonically in regard
to the two nodes.

Cutting the surface by the plane y—a2=0, and omitting the solution #=0, we obtain
the equation '

(z4n1z)(w4r2)+ (a4 e —at)a*=0;
and in order that this break up into factors, the condition A*—cA*—bi—a=0 must be
fulfilled, and the equation of the section then becomes (z-42%z)(w-+2*2)=0. Now, as is
well known, the solution of the quartic condition depends upon that of the cubic
equation
X?—20X?4- (4 4a)X —*=0.
Accordingly, in order to avoid irrationalities, we put
2=+t C+da=LY+vd e, b=efy,
and, for the sake of shortness, c=3(«+B-7y), whence
w=o(s—a)o—P)e—7) o=He+B+7),

and A has the four values o, —0, 3—0, y—o. Hence the four triangle-planes passing
through the axis are

w—y=0, (-—aoty=0, (s—Plo+y=0, (s—7)a+y=0.
W=+ B+ o+t w=0
passing through the transversal, cuts the surface in the trilateral
#{(c—e) xtay +2 H(e—B)o—y)r+ay—z}=0,
z{(¢c —B)(oe—y)r+oay—w}{ o(c—a)r+eay+w}=0,

in each of which representations the consecution of the three sides is the same, while in
the first all the planes (or factors) pass through the node W, and in the second through
the node Z. Denoting the sides of the triangle corresponding to the constant  in the

The plane

or
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same order by azis, a, @, and the planes passing through them and the nodes by (Wa),
(Wa), (Za), (Za), we see that through each nodal ray there pass three planes, as
follows :— '

(Wa), (Wb), (Wc) through the ray s —y=0, o’z +2=0,

(Wa), (Wb), (We) through the ray (¢ —a)r+y=0, (¢6—ea)r4-2=0,

(Wb), (We), (Wa) through the ray (¢ —B)r4y=0, (¢—p)r42=0,

(We), (Wa), (Wb) through the ray (¢ —y)r+4y=0, (¢—y)2+42=0.
If we permute the nodes W and Z, we must in this scheme also permute a with @, b

with b, ¢ with ¢, and z with w.
Art. 17. In order to get a trihedral-pair form, let

P=(c—B)o—y)otay—z, Q=(r—y)(c—a)r+By—2,
R=(c—a)(c—P)x+yy—2z, S=w—z,

(B=yNy—a)a—PL)=0;
then it will be found that
3e(Q—=R)P(P—8)42+(Q—R)(R—P)(P—Q)=d{zzw+4y*(z+w)+ a2’ ba’y+cay’} ;
but the left-hand side of this identical equation is equal to
—SQR{(B—y)S+(r+)Q--(a+B)R),

(B—7)S4+(y+2)Q—(¢4B)R=(B—1y){s(s—e)r+tay+w}.

Put therefore
p=(B=y){olc—a)otay+w}, g=(y—e){o(c—p)r+Ly+w},
r=(e—pB){o(c—y)x+yy+w},

PQR+¢RP+rPQ=0
will be the equation of the surface, where the six linear functions fulfil the identical
relations

and

where

and then

p+g+r=0, ap+pg+yr+(F—7)P+ (v —e’)Q+("—)R=0.
If 7 denote a number which is ultimately made to vanish, this equation may be exhibited
under the form
(P4+2p)(Q+1g)(R4Fr) — (P —hp)(Q—hg)(R—Ar)=0.

Let p=AP, ¢=pQ, r=yR; then A4p-4»=0in virtue of the equation of the surface.

Again, if for shortness we put
J=oa+Puty, g=e’hFutoh, h=of—g,
from the foregoing relations it will next be found
S=g+mw, P=g+(B—y)w, &¢'a dr=—3(3~—7)P,
ty=3(B—y)(o—e)P, Gz=3(B—y)(c—a)P,

and then _
bo=f%" ty=fh, le=—lg—1, Ow=0uw—P;
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the coordinates of a point of the surface are thus expressed in terms of two independent
variables; only the values A=8—¢y, p=y—u, y—=a—f3 are inadmissible. To verify the
equation of the surface we have

dor—y)=fy, (B—r){(c—a)r+y)=2f, &c.

(a4 b0y +-cay —y ) =hguaf g
and on the other side

b(wzty)=—gf* Haw+y)=rmf>.
(2z+9y*) (2w +9°) + ax* + b2’y +ca*y* —y* =0 ;

but the values of the nodal cone quadratics show that three rays of the node W and one
ray of the node Z cannot be expressed.

‘We have still to divide this sort of surface into species. = 'Whether both nodes be real
(when z, w are real) or conjugate (2, w conjugate), there are but three cases to be
distinguished. .

1. «, B, y are real. Then the four triangle-planes passing through the axis and the
three passing through the transversal are real. IV. 1, and IV. 4. '

2. o is real, 3, y are complex and conjugate. Then of the planes passing through the
axis only two are real, the two others are conjugate; and of those passing through the
transversal but one is real and two are conjugate. IV. 2, and 1V. 5.

3. & isreal, B, y are lateral (according to the denomination proposed by Gauss, that
is to say, 3 and o® are negative). Then the planes passing through the axis are conju-
gate by pairs; and those passing through the transversal are all of them real. IV, 3, and
IV. 6.

Hence arise six species.

whence

This gives indeed

V. Cubic surface of the eighth class with o biplanar node.
Art. 18. From art. 7 it appears that the equation of this surface can be written
zyw+(v4y)2* 4+ 2(ax’+by*)z+ca®+ dy* =0,

since all the terms divisible by 2y may be joined to the first term. But giving this
equation the form

xylw—2(a+b)ze—(2ab+c)x—(2ab+d)y]
+(@+y)l(z+artbyy+(c—a ) +(d—8")y"]=0,
we see that more briefly it may also be thus written,
2zyw—+(2+4y)(#*— aa®—by*)=0.
The equation reciprocal to this is contained in the discriminant of the binary quartic
ra’y*+2s(pe+gy)ay(e+y)+5' (e’ +by") (@ +y )
If we put

L=(a+8)s24+2(p+g)s+7*, M=(dp+ag)s+pg, N=abr*——bp*'—ag*,
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and denote by S, T the same invariants as are found in Dr. SaLmon’s ¢ Higher Algebra,’
p. 100, then we have
_ 128=12—12sM, 216T=—I1’418s’LM+}54s'N, 16(S*—27T*)=s'0O,
and ultimately
O=ab(a+b)*{(a+d)r*—(p—q)}s°
+2ab{3(a-+0)(a—28)p-+(—2a-+B)g}*+(p—q)(— Sa-+50)p+ (5a— 3b)g)s

+ {3ab(@®—Tab+ ")+ [8(9a* +26ab— b )p*— 26ab(a—+0) pg+a( — a*+26ab
+90*)¢*1r* +(p— q)’[6( — 120+ 8 )p*+22abpg+a(a—12b)q"] } s*

+2{3ab[(2a—b)p—+(—a+2b)g]r'+[0(—2a+50)p*+b(3a—20)p°g
+a(—2a+3b)pg*+a(5a— 28)g* "+ 2(p — ¢ ) — 20p° +bp°q +apg® — 2ag°]} °

+{8ab(a—+0)r'+[b(9a—20)p*+8abpg+a( — 2a+9b)g*|r*
+2[—6bp*+0p°g—(a+-0)p°s"+apg’—bag 1+ 4p°¢'(p— )"} s

+2{8ab(p-+9)r*—(30p°+20p*q+2apg®+3ag’* +4p°*(p+q)r*} s
F-rt(ar*—p*)(br*—q*)=0
is the reciprocal equation required.
Let 16H be the Hessian of the primitive function, then
H=2(2x4y)xyw—+(x—y)2"+ (2 +y)(3aa®— ax’y —bxy*+ 3by°),
whence the system
2y ,ar’+by—22, ax®+oy?
z+y, 2w , 22
will represent the spinode curve, which is therefore a partial curve of the tenth degree,
and in which there pass through the node six branches, in lowest approximation repre-
sented by the systems (2aw+2’=0, 2by’w+2'=0), (2yw+2"=0, 2a2°w+-2'=0), and
having the axis for a common tangent with a singular kind of contact. Any plane passing
through the node intersects here the curve in six coincident points, any plane passing
through the axis in eight, and each nodal plane in ten coincident points.

Art. 19. Let a=o’, 0=, U=2eB(x+y)—W, V=2+toaz+y, W=z—awr—pgy,
X=2aB(x+y)+W, Y=—2~0a2+0By, Z=—2—ax~+By; then the original equation
takes the form UVW +XYZ, and the six new functions fulfil the two identical relations
V4+WH+Y+Z=0, U—(2+4p)V+(2+B)W+X—(a—pB)Y+(«—B)Z=0. Imagine
‘instead of these the relations ' ‘

RU+V+WHAX+YHZ=0, AR U4+BV+CW+DrX+EY+FZ=0,
where

=0

A= t—(a+B), B=—(a+B)+i(x+BY, O=a+B—h(a—BY,

D=3 —(24B)+4aph, B=—(a—p){1—k(«—B)}, F=—E.
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Because the six constants fulfil the equations
A+B+C=D+E+F, BC+CA+AB=EF+4FD--DE,

the cubic condition inherent to the trihedral pair AUVW 4AXYZ=0 has three equal
roots. Let then A vanish, and the former system will be reproduced. At the same time
such equations of triangle-planes as in art. 13 were u42=0, u+4y=0, v+2=0 will
now become respectively U4+X =0, Y=0, V=0, and so on; but we shall continue to
denote them by (ux), (uy), (vx) as before, yet omit accents, since all three accents coin-
cide. So we get the following survey of the twenty-seven lines on the surface, showing
in what manner they coincide :—

The nodal edge (or here ais, since the surface is along it touched by a plane) (2=0,
#=0) unites the six lines /, p. The four other nodal rays unite each of them four lines
such as follow, (vy, ), (w2, q); (vz, n), (wy, m). _ The transversal ux, and the other sides
of the two simple triangles standing upon it, ug/, uz, vx, wax, are the only five simple
lines. In all 1-64-4-445-1=27 lines.

Each nodal plane unites twelve triangle-planes, viz. #=0 unites (vz), (wy), (Imn);
and y=0 unites (vy), (wz), (pgr). The four planes, joining a ray of one nodal plane
with a ray of the other nodal plane, unite each of them four triangle-planes, viz.

V=0 {v, (v2)}, W=0 {w, (wz)}, Y=0 {y, (wy)}, Z=0 {z, (uz)}.
The singular tangent plane 27 =0 unites the three planes (ux). Lastly, there are but
two simple triangle planes, those passing through the transversal U=0,and X=0. In
the whole 2:12-44-441-342-1=45 triangle-planes.

Since the functions z, w, -y, 2y must always be real, there are four species.

1. All is real, and @, ¢ are positive. V. 1.

2. x, y are real, ¢ is positive, and & negative. The only real lines are the axis, two
rays in only one nodal plane, and the transversal. V. 2.

3. @, yarereal, ¢ and b are negative. The axis and transversal are the only real lines.
Each nodal plane contains two conjugate rays. V. 3.

4. 2, y are conjugate, and so also are @, b. The axis and transversal are real; of the
two real planes passing through the transversal, one only contains a real triangle; these
four lines only are real. V 4.

VI. Cubic surface of the seventh class with a biplanar and a proper node.

0 o
07 dw

equation necessarily takes the form lew--mz-+nw--p=0, where I=(z, y); m, n=(z, y)?,

Art. 20. If a cubic surface have two nodes, chosen for points of reference , 1ts

p=(, y)*; and if a—a;v— be a biplanar node, /z+n must break up into factors, whence 7

must divide %, so that /z+n may then be replaced by 2. And joining the terms in
mz, which are divisible by 2z, to the term 2zw, we may write

zzw+2xy°z +aa’ —|—3bxy+ Sexy’+dy’=0
as the equation of the surface.
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The equation reciprocal to this is found by dividing the discriminant of the binary
quartic (pa®+ qay—sy?)*+ 4rsx(aa® + 32y + Seay®+dy®) by 7°s® and equating the quo-
tient to zero. Let
L=¢"+4(p+3cr)s, M= —dpg—+ 3(—2cp +bg—2bdr)s +2as?,
N=d’p*+2d(3bp—2aq+ 2adr)s+ 3(30*—4ac)s?,
12S=1"+424rsM, —216T=L*+ 86rsLM +216+*s*N,
M*—LN=4sP, $*—27TT*=7"5"0,
then S, T are the two invariants of the guartic in question, and
O=1L7P + 8M*— 9rLMN —277*sN*=0
is the equation of the surface in plane-codrdinates. If
B=86§(—z+2c%+da%+ga—ap-—23§-,
then dN=—2dM, M= —dL, 3L=12drs, whence 3S=0, dT=0, 3@=0.
The quartic function, the Hessian of the original cubic, is
{24 3(cx+dy)} (v2w +y°2 4 ax’ + 3ba’y + Bcxy® + dy*) — da(ax’® 4 3ba*y + 3eay® + dy®)
— 3{(4ac— 8*)a* + dada’y + 6bda’y® + deday® + 'y,
The spinode curve is therefore a partial curve of the ninth degree, which has the
biplanar node for a quintuple and the proper node for a triple point. The tangents at

the latter node are the three disengaged nodal rays; but of those at the former node
one tangent is (¢=0, 3dy+ 42=0), and the four remaining tangents are

2=0, (4ac— 302"+ 4ada’y + 6bda’y® + dedxy’ + d’y*=0.
Art. 21. If d vanish, the edge of the biplanar node would belong to the surface, and

its class would therefore sink to six, contrary to the supposition. We are.therefore
allowed to change z into dz and write

azw+y°z+(y +ex)(y +Ba)(y +ve)=0
as the equation of the surface. Again, let
P=w—Lyr—(B+v)y,
Q=w—yar—(y+a)y,
R=w—eaB2r—(a+P)y,
p=(B—y)(er+y+2)
9=(v—2)(Br+y+2),
r=(a—LB)ye+y+2);
the six new linear functions will satisfy the identical relations
p+g+r=0, (B—9)P+(y—a)Q+(e—B)R+ep+pg+yr=0,
PQR+¢RP+7PQ= — (B—y )y —a)(a—p){wzw—+y'2+(y+ex)(y+Bz)y+r2)};

MDCCCLXIIL, 2 H
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and the equation of the surface is now changed into
PQR+4¢RP+rPQ=0.
Introducing then a number % which is ultimately made to vanish, we put
U=P+hp, V=Q+hq, W=R+hr, X=—P+4hp, Y=—Q41g, Z%—R+hr

whereby the equation of the surface becomes UVW—I—XYZ and if, for the sake of
shortness, we put

A=a+(B—)h, B=5+(7—a)ﬁa C=y+(z—p)k,
D=a—(B—y)h, E=f—(y—a), F=y—(a—p)h
the above-mentioned two identical relations become
U+V4+WHX+YHZ=0, AU4+BV+CWHDX+EYHFZ=0,
where the six constants satisfy the relations
A+4+B4+C=D+E+F, BC4+CA+AB=EF+FD+4DE

strictly, while ABC—DEF is different from zero. All three roots, therefore, of the
cubic condition inherent to this trihedral-pair form coincide, and the correspondiﬁg
relation U4+V4+W4+X+Y+4Z=0 counts for three such intersections.

Hence the axis (#=0, y=0) unites six lines, viz. the lines m, n. FEach of the remaining
four rays of the biplanar node unites three lines; viz. (=0, y+42z=0) unites the three
lines 7, (=0, «x+y=0) unites the three lines p, (2=0, Sz-+y=0) unites the three lines ¢,
(¢=0, y+y=0) unites the three lines 7. Fach of the remaining three rays of the
proper node unites two lines, viz. (ax4y=0, w—ay=0) unites vz, wy; (Br4y=0,
w—pPy=0) unites wx, uz; (yr4y=0, w—qyy=0) unites uy, va. Three lines are simple
viz. (P=0, p=0) or ux, (Q=0, ¢=0) or vy, (R=0, »=0) or wz. In the whole
1:6+4:343:2431=27 lines.

Of the following five triangle-planes each counts for six. The singular tangent plane
#=0 unites all the six planes (/mn); the other plane 2=0 of the biplanar node unites
the six planes (pgr); of the three further planes which (besides #=0) pass through the
axis, the plane ax+4y=0 unites the two triads (vz), (wy), the plane fz+4y=0 unites the
two triads (w), (uz), and the plane yr+4y=0 unites the two triads (uy), (vz). The
three planes which combine the single ray / of the biplanar node with any one of the
rays p, ¢, r in the opposite nodal plane count each of them for three triangle-planes,
viz. p=0 unites the three planes (ux), =0 unites the three planes (vy), »=0 unites
the three planes (wz). Lastly, the three planes which combine any two of the three
disengaged rays of the proper node count each of them for two triangle-planes, viz. P=0
unites the planes u, #; Q=0 unites v, y; R=0 unites w, z; they are the planes of the
two coinciding trihedrals. In all 5:64-3:343:2=45 triangle-planes.

Art. 22. As to the reality of the linear functions in the original equation, it appears
that both # and z must be real, since the two planes of the biplanar node play different
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parts, and that it is always allowed to assume y as real, since the corresponding plane
may be turned about the real axis; but w will then also be real, and of the three
constants «, 3, ¢ one at least must be real. There are therefore but two épecies.

1. Allis real. VL 1. ‘

2. « is real, 3 and y are conjugate. Only the axis (#=0, y=0), two rays of the
biplanar node (#=0, y+2=0) and (2=0, ax+y=0), one ray of the proper node
(ex+y=0, w—ay=0), and the simple line (P=0, p=0) are real. VL. 2.

_ VIL Cubic surface of the seventh class with a biplanar node.
Art. 23. According to art. 7 we put
zyw—~+ 22>+ (2a2°+by? )2+ ca® +dy* =0
as an equation of the surface in question, since all the terms divisible by 2y can be
carried into the single term ayw. The mark of this sort of biplanar node is that one
of its planes (here #=0) ¢ouches the surface along the nodal edge; if & were to vanish

it would osculate the surface, and then the class would sink to six. Since therefore 4 is
not allowed to vanish, we may put the above equation under the form

d d? d \? d
xy(w—zz (z4ax)— (ab+ Zg>y> +x<z+aw+5y> + by’ <z+ax+5y> +(¢—a?)2*=0,
or more simply
zyw-+27*+y*2— ar*=0.
We shall in the sequel retain the constant @, because its being positive or negative
decides as to reality or non-reality. But now that we are concerned with the reciprocal
equation of the surface, we may, on putting a=2* change ¥, z, w respectively into
Ay, A%z, A°w, and we get
zyw—+a+y'z—a*=0.
The reciprocal septic @, when multiplied by s°, is the discriminant 8*—27T* of the binary
quartic

y(re—sy)+4sa*(sa®+pry+ qy°);

hence '
; 12S=12424s"M, —216T=L’+436s’LM-4-216s*N,
where v
L=r'44¢s, M=pr+2s’, N=p>*—4gs;
and

A2 . ’
o=12. TN | g\ gsTMN — 279N

=645 32(3pr—4¢*)s’416¢(5r*+ 9p*)s*
(74 80p* 4 160pg>r— 2Tp* + 644*)s?
+ 49(11pr*+12¢°r*— p°r — 4p2g2)32 ‘
T pr*+12¢°r —pr —8p’¢)s +gr'(1* —p*)=0
is the equation-of the surface in plane-coordinates.
2H2
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The quartic function, the Hessian of the cubic f=ayw-+a2*4y*%—a?, is
af —dayz 4oty
(f=0, 4a'+y'—4ay2=0)

contains the axis (#=0, y=0) four times, the spinode curve of the original surface is a
partial curve of the eighth degree. An arbitrary plane passing through the node inter-
sects the quartic cone in four lines, each of which also cuts the cubic surface in a point
distinct from the node. This arbitrary plane thus intersects the spinode curve in four
points distinct from the node, so that this must be a quadruple point of the curve, since
it unites the remaining points of intersection. One of the four branches passing through
the node is (at the lowest approximation) represented by

and since the system

25
yw=—92°, aw'=— 2",

and therefore osculates the nodal plane which is a singular tangent plane to the surface,
and merely touches the other nodal plane. If ¢ denote a very small variable number,
the three other branches may be represented by

r=tw, s=tw, y=—1w.

Art. 24. The nodal plane £=0, which touches the surface along the nodal edge or
axis, contains only a single disengaged ray (call it f), the other nodal plane y=0 con-
tains two rays (call them ¢, 2); and the planes combining the former ray with any one
of the two latter rays are (fy) or 242=0, and (f%) or z—x=0. It is manifest that,
besides the nodal planes and these two planes, there pass no other triangle-planes
through the node. The planes (fy) and (/%) intersect the surface respectively in the
simple lines (z+2=0, w—y=0) orj and (2—2=0, w+4y=0) or £&. Now as a plane
containing the node and any distinct and therefore simple line of the surface must be a
triangle-plane and therefore combine two nodal rays, there cannot, on all such planes
being exhausted, be found any other simple line of the surface. Hence these distinct
lines j and % are the only simple lines of the surface, and it is obvious that they do not
intersect each other. Again, since two independent lines are cut by five lines, and these
lines (7 and %) are simultaneously cut only by the ray £, this ray f unites five lines of
the general surface; and then, because each of the simple lines j and £ must besides be
cut by five more lines, each of the nodal rays ¢ and % also unites five lines. But all the
lines thus far mentioned count as 3:542:1=17 lines. Therefore the nodal edge (or
axts) unites ten lines of the general surface, precisely those Zen (as we know from art. 1)
lines disengaged from the two independent lines j and £.

1t is already proved that the two planes passing through the simple lines and the node
count each of them as five. No one of the five lines united in the ray f intersects any
other of them; wherefore no two of them can lie in the same triangle-plane. But two
triangle-planes passing through any one of them have been already spoken of, viz. (fg)
and (f%); the three remaining ones must therefore coincide with the nodal plane 2=0;
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hence this plane counts as fifteen. The ray ¢ unites the five lines intersecting j but not %,
the ray % unites the five lines intersecting Z but not j, and each of the former five lines is
(as may be inferred from the consideration of a simple triangle) cut by four of the latter
five, which determine with it four different triangles. Therefore twenty triangle-planes
coincide in the nodal plane y=0. In all 1-204-1-1542-5=45 triangle-planes. |

The same consequences may be derived from a trihedral-pair form. Let

U=a+2—t(w—y), V=—y—h(z+z), W=a—2,
X=x—z+hw+ty), Y= y—h(r—=z), Z =z+z,
then v
UVWHXYZ=2h{zyw+as*+y’2—2°+hy(*—2°)}, V+IEWHYLRZ=0,
U+4+hV—-14+P)W4X =AY —(1—7*)Z=0.
If the number % vanish, the equation UVW 4+XYZ=0 will, at the limit, exhibit the
present surface, and the former of the linear relations, by reason of the latter, counts
for three relations answering to the cubic condition. Omitting the three accents as in
(ux) and the permutations as in (/mn), we then get the following survey of the manner
of coincidence of the 27 lines and 45 triangle-planes of the general surface.

The axis (#=0, y=0) unites the ten lines (vy, {, p, 7). The nodal rays unite each of
them five lines; viz. the ray (=0, 2=0) unites (u, wz, ¢), the ray (y=0, 2+2=0)
unites (g, vz, n), the ray (y=0, #—2=0) unites (va, wy, m); and there remain but
two simple lines (#+2=0, w—y=0) or uz, and (v—2=0, w+y=0) or wa.

The nodal plane y=0 unites the twenty triangle-planes v, y, (uy), (vx), (v2), (wy),
(lmm); the nodal plane #=0 unites the fifteen planes (ux), (vy), (wz), (pgr); the two
remaining planes unite each of them five triangle-planes, viz. £-+%=0 unites w, 2, (u2);
and 2—2=0 unites w, #, (wx).

Art. 25. In the equation ayw-axz’+y%2—aa*=0 the vanishing of the constant e

would give rise to a second node % - Therefore we have here only the two cases when

a is positive and when it is negative. Since no two of the linear functions «, ¥, 2, w
play a like part in the equation, we are obliged to suppose them all real. So there are
only two species.

1. @ is positive; all is real. VII. 1.

2. @ is negative; the two simple lines are conjugate, and so also the two rays in the
nodal plane y=0. VIL 2.

VIII. Cubic surface of the sixth class with three proper nodes.

Axt. 26. If we place the points of reference %, —3%, 6@5 at the three nodes, the equa-

tion of the surface will contain the terms a°, 2%, 2%, 2°w, xzw, 2wy, ayz, yzw; but the

last term is capable of taking up the three next preceding terms; in other words, the

three singular tangent planes which touch the surface along the axes (or lines joining two

nodes) may be chosen for the planes y=0, 2=0, w=0; then we are at liberty to write
- B4 (y+ 24wt ayzw=0
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as an equation of the surface. The term 2°, if disappearing, would not alter the class,
but would merely form a particular case of the sort of surface here to be considered,
which case might readily be restored from the more general form by changing @, %
respectively into A%, hx, dividing by 7* and letting % vanish. But the term 4% cannot

disappear without bringing the class down to five; for the point % would then become

a biplanar node. Nor is thé constant ¢ allowed to be zero or —4; for in the former case
the cubic would be divisible by 47, in the latter it would be half the expression

a3(x+22) (x4 2w) — (2 +2y) (2 +22) (2 +2w),
which shows a fourth proper node at the point
50 , 0,0 ,0
EECTANTANFRRTY
If we denote the surface by f=0, and let

of 9 2 .
%;pu, g§=gu, a—i:m, 5{2:‘%’ ¥’=t, x=1at(t—pu)+(t—qu)(t—ru)(t—su),

where ¢, u are to be regarded as the independent variables, then we have not only

x=af{2*+2*(y+2+w)—ayzw},

but also
0
F=a(y+z+w)f;
whence
OX__g OX_
=0 &=0

whenever f=0. That is to say, the equation reciprocal to =0 is the discriminant ® of
the binary cubic x, when equated to zero. Putting, for shortness,

a=q+r+s, P=rstsqgtqr, y=grs,
we find

210=1ap"(p—)(p—rNp—s3)
150’ (128 —o)p* — 4(2aB+ 9y)p*+2(15ay +48*)p*— 36 fyp+2Ty"}
+ 30{(6B'—B—Yary)p*+ 260y — o3 — Py )p-+ 2+ 2T — Yy}
= (r—=sf(s—9)(¢—ry=0,
as the equation of the surface in plane-coordinates.
The Hessian of the primitive cubic is
4o {ayzw(3x+y+2+w)+2°(y 4 2+ w' — 22w — 2wy — 292)} .
Hence the spinode curve is a complete curve of the sixth degree represented by the
system .
42 (y+2+w)+ayzw=0,
o'+t (y+z+%U)+zw+wy+yz=0a}
which shows that the nodes are double points of the curve, and that at these points
the (disengaged) nodal rays of the surface are tangents to the curve.
Art. 27. By what has been said in art. 15 we can at once judge of the disposition of
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the lines and triangle-planes. The three transversals are the only simple lines, and form
a triangle (24y-4-2+4+w=0, yz2w=0), the plane whereof'is the only simple triangle-plane.
The planes determined by a transversal and the opposite node intersect the surface in
thrice two (disengaged) nodal rays, each of which unites twolines. Fach of the three axes
unites fourlines. Together 3:14+6:24-8-4=27 lines. The singular tangent planes y=0,
2=0, w=0 count each of them twice, and so also does each of the three planes passing
through a transversal and the opposite node. Through each axis and two nodal rays there
pass two planes, together six planes, each of which counts four times. Lastly, the plane
x£=0, containing the three nodes, counts eight times. Together 1'14-6-24-6-4-41-8=45
triangle-planes.

If we assume the trihedral-pair form UVW4XYZ=0, where on putting a=

we have ,
U=—(e—1)a+y+24+w), V=—ar—(e—1)y,
X= (o?—l)y, Y=(e«—1)(x+y+w),
then the constants in the auxiliary relations
aU+...=0, dU+...=0, o"U+...=0 are a=0, b=1, ¢=q, d=a+1, e=0, f=0

(@—1)*

W=a—(z—1)y,
Z=(a—1)(a+y+2)

(therefore when e, f are imagined to be indefinitely small, @ is of the order ¢f, whence,
for instance, aU+fY=0 reduces itself to Y=0),

=i =d=d=d=f, d'=b=d=d"=é =f",
and at length we get the following survey: viz., the lines are

(#=0, y=0) [ve, wa, 7, pl,
(z=0, z=0) [m!, m', 7, "],
(x:O’ w=0) [n’a nll, gla q"]a

(x: z2:w=0—1:—e:1) [7,1"],
(@: z:w=e—1:1:—a) [p,p"];
(#:w: y=a—1:—a:1) [wy, 7],
(x:w: y=a—1:1:—a) [vy, m];
(@:9y: 2=a—1: —a:1) [oz q],
(:y: z2=a—1:1: —a) [wz,n];
(z+z+w=0, y=0) [wa],
(e+y+w=0, 2=0)  [uy],
(z4+y+ 2=0, w=0) [uz];

and the planes are
(2=0) [(va), (w2, (wa), (wa)', (Imn), (tnm), (pgr), (pra)}

( ert(e—Ly=0) [v, (v9), (v2), (wa)],

(= e+ (a—1)y=0) [w, (vz), (wy), (w2)],

( ax4(e—1)2=0) [(wz), (wz)", (nlm), (nml)],
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(— o+(2—1)2=0) [(vz), (v2)', (gpr), (qrp)];

( art(e=Lw=0) [(wy), (wy)', (rpg); (rgp)l;

(= a+(a=1w=0) [(v),(vy)",(min),(mal)],

(y=0) [@ (uz)], (2=0) [(wy), @y)"], (w=0) [uz), (v2)"],
(z+24+w=0) [(ux), (uz)'],

(r+y+w=0) [y, (wy)], (z4+y+2=0) [z, (u2)],
(z+y+z+w=0) [u]. S

Art. 28. One node at least must be real, for instance 37 and then the two others may

be real or conjugate. Accordingly « is always real, and while we keep y real, z and w
may be either real or conjugate. On the other hand the constant ¢ may be between
—4 and 0, or beyond these limits. From these two reasons of partition there arise four
species of the surface with three proper nodes. But we prefer to distinguish five species.
For if z, w be conjugate, the nodal cone #*+azw=0 becomes imaginary or real, accord-
ing as >0 or a < —4. '

1. 2z, w are real; a(a-+4)>0, and therefore « real. All is real. VIIL 1.

2. zw real; —4<a<0. Leta=—4sin? %, then ¢=¢®. The real lines are the three

axes and the three transversals. The real planes are the plane of the three nodes, the
three singular tangent planes, the plane passing through a transversal and the opposite
node, and the transversal plane. VIII. 2.

3. z, w conjugate, @ >0, and therefore « positive. The two nodes a% and %} are con-

jugate, the nodal cone at the real node B_ay is imaginary. The real lines are the axis

joining the conjugate nodes, and its transversal. The real planes are the plane of the
three nodes, the singular tangent plane through the real axis, two other planes’ which
pass through the real axis, the plane passing through the real transversal and the real
node, and the transversal plane. VIII. 3.

4. z, w conjugate, a< —4, and therefore « negative. The nodal cone at the real
node is real, but its two (disengaged) rays are imaginary and conjugate. The rest as
before. VIII. 4.

9. z, w conjugate, —4<a<0. The nodal cone at the real node is real. The real
lines are the axis joining the conjugate nodes, its transversal, and the two (disengaged)
rays of the real node. The real planes are that of the three nodes, the singular tangent
plane through the real axis, the plane passing through the real transversal and the
real node, and the transversal plane. VIII. 5.

IX. Cubic surface of the sixth class with two biplanar nodes.
Art. 29. From art. 20 it appears that the reduced equation of this sort of surface is
vzw+(y+ea)(y +pBr)(y+yx)=0,
e

where baz’ 5 2Te the biplanar nodes. These have in common the nodal plane #=0,
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which osculates the surface along the axis (#=0, y=0). The other nodal planes are
2=0, w=0, each of which intersects the surface in three nodal rays. In order however
to find the reciprocal equation it is more convenient to write
1222w+ aa® 4 3bay + Scay* + dy*=0
as the equation in point-coordinates. Then the discriminant of the binary cubic
rs(ax®+ 302y + 3exy® +dy®) + Sx( pr +qy)?,
divided by #s and equated to zero, will furnish the equation in plane-coordinates as
follows; viz. this is

[@*d*—6abed — 30°c* + 4ac® + 4b6°d |r*s’
+6[(ad*—3bed + 2¢*) p* + (40°d—2acd — 2b¢*)pq + (2a¢® — abd — bc)q* |r*s?
+ 8[8d%p* —120dp*q + (10bd + 8c*)p*q* — (dad + 8bo)pg® + (4ac—b)g Jrs
—4g*(dp*—3ep’q+3bpg* —ag’) =0.
The Hessian of the cubic 1222w + aa® + 3ba’y + Scay® -+ dy° is
64-81a{4zw(cx+dy)— (ac—*)a* — (ad—be)a’y — (bd— ¢*)ay*}.
The system of the two expressions equated to zero breaks up into four times the axis
(=0, y=0) and four conics which lie in the planes ’
(4ac—30°)2* + 4ada®y + 60da’y® + deday® + d*y* =0,
and touch the nodal planes z=0, w=0 at the corresponding nodes. Two of these four
planes are always imaginary and conjugate, the two remaining ones are real. For let
K=a’d’—6abcd— 30*c* + 4ac* 4 40°d, B*=41d’K,
and take for % the single real value ; again, let =%+ ¢*—bd, which is positive, since
B4 (—bd)=%(ad*— 3bed+2¢°), .
and determine the value of / by the condition that /(ad®— 3bed+2¢°) shall become
positive; then the constants m?, n* determined by ‘
(m?* +n*)=2(ad*— 3bed+2¢%), n*—m*=2k+4(bd—c?)
will be positive, because this system implies mn= +/3.%; and the equation of the four
planes breaks up into
{(dy+(c+Da)—m’a*} {(dy+(e—)x) +n°2} =0.
The section made by the real plane dy+(c+!+m)x=0 is represented by
24d2zw——m((25 -l—m)’—|—n2)x2:=0.

In the case therefore when both z and w are real, the two real planes contain also real
conics; but when z and w are conjugate, one only of the two real planes intersects the
surface also in a real conic, the other real plane has, besides the axis, no real’ point in
common with the surface. N
Art. 30. We now suppose azw+(y+ax)(y+pBx)(y+yx) to be the equation of the
surface. As this form results from that of art. 21, by changing z, w respectively inte £z,
MDCCCLXIIL. 21
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'7:—7, and letting % vanish, we >ma.y readily thence get aknowledge of the disposition of the

twenty-seven lines and forty-five triangle-planes, and we shall in particular see that the
axis here unites all the nine lines immediately afforded by a trihedral-pair. Changing
then the notation for the sake of greater symmetry, we can regard the surface as though
the six planes of uvw+2yz=0 coincided with the singular osculating plane (#=0), while
the nine lines ua, &c. coincided with the axis. One of the two remaining nodal planes
will then unite all the six planes such as ({mn), and contain the three nodal rays (7, m, n),
(7, m, o), (I, m", n"); the other nodal plane will unite all the six planes such as (pgr),
and contain the three nodal rays (p, ¢, »), (9, ¢, #), (9", ¢", #"). One of the remaining
triangle-planes passing through the axis, for instance the plane which combines the
nodal rays (I, m, n) and (p, ¢, r), would then unite the nine triangle-planes

. (uz), (ug), (uz), (va), (vy), (v2), (wa), (wy), (w2),
and the other two like planes would answer to the two remaining accents. In the whole
1:94-6-:3=27 lines and 3-9+ 3-6=45 triangle-planes.

The singular osculating plane £=0, and one at least of the three other planes passing
through the axis y+da=0, for instance, must be real. But 2z, w can be either real or
conjfigate, and so also the constants 8, y. From this double reason of partition we get

four species, IX. 1; IX. 2; IX. 3; IX. 4.

X. Cubic surface of the sixth class with a biplanar node and a proper node.

Art. 31. The cubic surface with a biplanar node which lowers the class by jfour can
only in this way have a second node distinct from the first, when the two (disengaged)
rays of one nodal plane unite themselves together apart from the nodal edge. The
equation then takes the form

, zyw +(r+y)(2* —ax*)=0.
Changing z, w respectively into +/a.z, aw, we might reduce this equation to
xyw+ (2 +y)(2*—a*)=0.
But since ¢ may be either positive or negative, in the latter case we should get z as

the product of the numerical factor i (= \/ —1) by a real function; and to avoid this
we shall retain the constant a.
If we let a=1 and denote the discriminant of the binary cubic

Sa(e+9) +sy(z +9)( pa+gy) + 1wy
by 3% s’@, then

O=[r"—(p—q)ls* +[(2p —50)*—2(p—29)(p— 9 I+ |
[+ 3P —pg+ 6 —p (P — g1 +[a(2p + 30 —10*(p + )]s +1'er(r* — p*) =0
is the reciprocal equation of the surface.
" The quartic function, the Hessian of ayw+(x+y)(*—a?), is

z(x+y)(yw+3a*—ay)+22(x—y)
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Hence the spinode curve breaks up into four times the axis (#=0, 2z=0) joining both
nodes, twice the nodal edge, or also axis, (#=0, y=0), and the complete curve
(yw+2*=0, 2y+a°—yz*=0)
of the sixth degree. It has passing through the biplanar node three branches, repre-
sented in the lowest approximation by
' yw+22=0, 2*w-2'=0,
where only w is finite, and through the propernode two branches, the tangents whereof
are the two disengaged rays of this proper node, represented by
w=0, 2~—a*=0.
Art, 32, Let
U=—w+2h(z+y), V= ztat+hy, W= z—z—hy,
X= w42h(e+y), Y=—2—a—hy, Z=—zt+2—hy,
where % denotes a constant which ultimately vanishes ; then
UVW +XYZ=4h{zyw+(2+y)(&*—a"— k%) } =0
represents the surface in question, and
V+ WY +Z=0, U—(A+2)V+A+A)W+X—(1—~)Y +(1—h)Z=0
are identical relations, the former of which, in virtue of the latter, stands for the three
equations which correspond to the roots of the condition ABC=DEF. Hence we get
the following survey of the manner of coincidence of some of the twenty-seven lines and
forty-five triangle-planes (accents and permutations are omitted). ’ J

The axis joining both nodes (z=0, 7= 0) unites vz, 32;37, m, n, eight lines. The nodal
edge, also an axis, (#=0, y=0) unites /, p, six lines. The two disengaged rays of the
biplanar node count each of them four times, viz. (=0, 2+2=0) unites vy, r, and
(9=0, #—2=0) unites wz, ¢. The two disengaged rays of the proper node count each
of them twice, viz. (w=0, #4-2=0) unites uy, vz, and (w=0, y—2z=0) unites uz, 7.
Lastly, the transversal of the nodal edge (w=0, x4y=0) is the only simple line iﬁ
Together 1:84-1:6 424422 +1-1=27 lines.

The planes of the biplanar node count twelve times, viz, #=0 (a singular tangent
plane) unites (vz), (wy), (Imn), and y=0 unites (vy), (wz), (pgr). The two planes com-
bining the double ray of the biplanar node with each of its two simple rays count
eight times, viz. z+&=0 unites v, (vz), 7, (uy); and x#—2z=0 unites w, (wz), 2, (u2).
The plane 24y =0 touching the surface along the nodal edge unites (ux) three triangle-
planes, and the plane w=0 combining the two simple rays of the proper node, unites u, 2,
two triangle-planes of the general surface. In all 2-124-2-8+4+1:34+1-2=45 planes.

Because no two of the four linear functions #, g, z enter in a similar manner into the
form ayw-+(2+y)(2*—aa2*)=0, all of them must be real. Only the constant @, accord-
ing as it is positive or negative, gives rise to a distinction between fwo species. X. 1; X, 2,

212
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XI. Oubic surface of the sizth class with a biplanar node.
Art. 33. From art. 7 (see art. 23) we know that one of the nodal planes must osculate

the surface along the nodal edge, in order that the node ga~ may lower the class by sia,
w

and since in the first term ayw of the equation of the surface all other terms divisible by
&y may be included, we write the equation immediately in the form
xyw +a2* 4200’2 + b’ + dy* =0,
or, what is the same thing,
@.dy.dw+a(dz+adz) + (b —a*)a* +(dy)* =0,
or, to save constants,
ayw 422" +ax®+1*=0,
which is the assumed form for the equation of the cubic. It is well to observe that here
all the letters are necessarily real, provided that the surface be real. Putting a=—p°
and changing ¥, 2z, w yespectively into %, p'2, p'w, we might get
ayw+a—a*+y°'=0, |
where no explicit constant remains; but then z would cease to be necessarily real.
If we denote the discriminant of the binary cubic
(8as®, —ps, —(gs+11%); 35, y)’
by 35°0, then
O = — 645> — (4gs+1°)p—T2as*(4gs +1)p— a(4gs +1°)* +4324°" =0
is the reciprocal equation. It is obvious that
27420 = {8p° + Ya(4gs +1*)p—108a°s°}> — {4p* + Ba(4gs +7°)}".
The Hessian of the cubic is ’
da(zyw +x2*— 3ax>—3y°).
The spinode curve then breaks up into six times the axis (#=0, y=0), and the three
distinct conics
(a2*+5°=0, yw+2*=0).
Art. 34.‘Thé trihedral-pair form can only be obtained by the help of two constants
which ultimately vanish. Let them be % and w, the finite constant @ be =—¢* and
U=(1+a+ahe)y+h1 +20)2 + ha—wh’w,
V=(1+w)y+ whz+wohez,
W=y + hz—hex,
X = —(14+w—al’e)y—h(1+420)2+hex +ol’w,
Y = —(1+0)y—whz+whew,
Z=—y—hz—hex;
then \
UVW + XYZ=2uk%e{ayw+ (2 +oh?y)(2—a*) + (1 + o)y’
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becomes the cubic of the surface as soon as # and w vanish. Of the two identical
relations _
V+oW4+Y +aZ=0,
U=’V 4 (1+ &)W + X +wh’eY 4 (1 —’h)Z=0,
the former, in virtue of the latter, stands for the three equations which correspond to
the condition ABC=DEF. We may therefore, in the following survey of lines and
triangle-planes, omit accents and permutations.

The nodal edge (v=0, y=0) unites ua, vy, wz, I, p, ¢, r, fifteen lines. The two nodal
rays count six times, viz.

(=0, z+4gx=0) unites u_y, vz, W, 1,

(y=0, 2—par=0) unites vz, wy, uz, m;
in the same order as they here are written, they form a double six. Together1-154-2-6
=27 lines.

Each line of the one six, combined successively with the five not corresponding lines of
the other six, gives rise to five triangle-planes; all the thirty planes so obtained coincide
with the nodal plane y=0, viz. w, v, w, @, y, 2, (wy), (uz), (vz), (vz), (wz), (Wy), (lmn).
Again, as to the fifteen lines first mentioned, which, as we know, form fifteen triangles,
all their planes here coincide with the osculating nodal plane #=0, viz. (ux), (vy), (wz),
(pgr). Together 1-3041-156=45 triangle-planes.

‘We can distinguish only two species, according as the constant @ is negative or positive
(1, the two disengaged nodal rays are real ; 2, they are conjugate). XI.1; XI. 2. The
case where ¢=0 is not considered, because it would imply a proper node at the point

b%: with the cone yw+2*=0.

XII. Cubic surface of the sizth class with a wniplanar node.
Art. 35. The simplest form of the equation is
(x+y+2)w+ayz=0.

If all four letters are real, the three nodal rays (#+y+2=0, 2y2=0) are all of them real,
and imply the applanished proximity of the node into six angular spaces alternatively
full and empty, so that there appear three flat thorns having the node for their common
point*. (The surface here considered arises from III. 4, if there all the conjugate
values be allowed to coincide by pairs.)

Let sw=*¢, +y+2=u, and 550 be the discriminant of the binary cubic

(t—pu)(t—qu)(t—ru)+1st*u
in respect to ¢, w; then ©=0 will be the equation reciprocal to w’w+ay2z=0. Putting
e=p+g+r, B=gr+rp+py, r=per,
% A notion of the form of the surface may be most readily acquired by taking the equation to be

2+ wy(z—ma—ny)=0.—A. C,
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we have
O=—(g—r)(r—pf(p—q +3(«f"+ 9By — 6e’y)s +76(12ay — 8)s—~ {57s".
The Hessian of the original cubic is
Mx+y+2) (2’ +y* +2°—2yz— 2z — 2ay).
The spinode curve therefore breaks up into twice the nodal rays (or awes)
(z+y+2=0, 2yz=0)
and a complete curve of the sixth degree, arising from the intersection of a quadratic
cone, which cone is inscribed in the trihedral (2y2z=0) of the singular tangent planes in
such manner that the lines of contact are harmonical with the nodal rays in respect to
the edges of the trihedral. The nodal plane does not really intersect this cone when all
three planes of the trihedral are real; but it does so when one of them is real and the
two others are conjugate. The node is a quadruple point on the curve of the sixth
degree, and the two intersection-lines last mentioned are here a kind of cuspidal
tangents. '

Art. 36. In order to get a trihedral-pair form, let @, &, ¢ be finite numbers, » a
number which ultimately vanishes, and put (6—c¢)(¢—a)(e—&)=m, and moreover

U =(b—c)(1+ah)x+mhw,
V =(c—a)(1+bh)y +mhw,
W =(a—b)(1 + ch)z-+mhw,
X = —mhw,
Y = —mbw (14 ah)(14ch)e+ (1 +0h)(1+ah)y + (14 ch)(1+bh)z,
—hWL=mhw+(14+ah)(1+0h)x+(14+0h)(1+ch)y+(14-ch)(1+ah)z;
then the equation | ’
UVW + XYZ=m(1+ah)(1+5h)(1+0ch) {w(e+y +2)[a-+y +2-+h(az+by+cz)] +ayz}
is identically true, and the six functions U, V, W, X, Y, Z satisfy the identical relations
' U+V+WHX+Y+Z=0, AU4+BV+CW+DX+EY+FZ=0,
where the numbers
A=(c—a)(a—0b)(1+ch), B=(a—0b)(b—c)(1+ah), C=(b—c)(c—a)(1+bk),
D=A—(b—c)(14-ah), E=—mh, F=0
satisfy the conditions
A+B+C=D+E+F, BC+CA+AB=EF+FD+DE,
without ABC—DEF vanishing. As long therefore as % is finite, the surface
UVW +XYZ=0 has a biplanar node at the point 3%1 , and this becomes uniplanar

when / vanishes. Omitting then accents and permutations, because the three roots of
the auxiliary cubic condition are equal, we get the following survey.
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The three nodal rays count eight times; for
(u:O, 2=0) unites @, wz, 1, p,
(=0, y=0) unites vy, vz, n, r,
(w=0, z=0) unites wy, wz, m, ¢.
The sides of the triangle (w=0, 2yz=0) are simple, because they do not pass through

the node; they are uz, E,‘:b‘v} of the old notation. Together 3-8 + 3:1=27 lines.

The nodal plane »=0 unites y, 2z, (uy), (uz), (vy), (v2), (wy), (wz), (Imn), (pqr), thirty-
two triangle-planes. The three singular tangent planes count four times; for #=0
unites », (ux), and so on. The transversal plane w=0 is the only simple triangle-plane
« of the old notation. In the whole 132 +8:441-1=45 triangle-planes.

All this might have been foreseen by the help of easy geometrical considerations.

As to reality, the function w must be real, and so must also one at least of the three
functions , y, 2, for instance 2. 'We then have only fwo species, according as y, z are
real or conjugate. XII. 1; and XII. 2.

XIII. Cubic surface of the fifth class with a biplanar and two proper nodes.

Art. 37. Such surface arises from art. 21, when there the binary cubic

(g +ex)(y+Ba)(y+yx)

has two equal roots. ‘We are then at liberty to put B=y=0, «=1, and permuting x
and y we get
yzw+a*(x+y+2)=0

as the equation of the surface, where 5370 is the biplanar and B%’ 8%_ are the proper nodes.
And the survey given in the same article changes into the following :—

Lines unite. . ~ Planes unite.

(z =0,y =0) m, n, 6 |z =0 | (uz), (uy), (va), (wx), 12
(¢ =0,2z=0) ¢ 7 6|y =0 | (Imn), 6
(x =0, w=0) wy, uz, vx, T, 4 | 2 =0 | (pgr), 6
(y =0, +2=0) l, 3lae+y =0 | (v2), (wy), 6
(z =0, 2+y=0) P S|la+z =0 | (vy), (w2), 6
(2 =—2z=w) oY, W2, 21le—w =0 |ow,y,2 4
(¢ =—y=w) vz, wy, 2 || @ +y+2=0 | (ua), 3
(w=0, 4+y+2=0) | uz, 1w =0 |u, 2

27 45

The discriminant of the ternary cubic sa®(2+y+2)—yz( pr+ 9y +vz) divided by ¢**s’
and then equated to zero is the reciprocal equation of the surface. But this may also
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be derived from art. 20, and will be found to be
O=(s+p—g—7){4(g+1)s+p*}*—8¢r(2s+p) -+ 9gr(2s+p) {4(g+7)s+p*} —27¢"s
=16(¢—7r)s’+8{p*(¢+7)+2p(¢"—4qr+r")—(¢+7)(2g—7r)(g—2r)}s
+ {p*+8p°(q+7r)—2p*(4¢* +23qr+4r*) + 36pgr(q+r)—27¢}s
+r’(p—g)(p—r)=0.

The Hessian of yezw+a*(x+y+2) is 4{yzw(3x+y+2)+a*(y—=z)’}. Hence the
spinode curve breaks up into three times the axes joining the biplanar to the two proper
nodes, twice the third axis, and a complete curve of the fourth degree formed by the
intersection of the cones

(3w +4y+42)—(62+5y+52)+9(y —2)*=0,
(3x+4y+42)(w+ 4w+ 4y + 42)—16(y —2)*=0,
the latter of which passes through the vertex of the former, 7. e. through the biplanar
node. This is therefore a double point of the curve, and the tangents are
(3r+4y+42=0, y2=0).
" There are but two species; for &, w must be real, and only 7, z can either be real or
conjugate. '
1. All is real. XIII. 1.
2. y and z are conjugate. The two proper nodes are conjugate, and so are also the
two planes of the biplanar node. The axis joining the two proper nodes, and the
transversal of this axis are the only real lines. XIII. 2.

XIV. Cubic surface of the fifth class with a biplanar node and a proper node.

Art. 38. As we have seen above (art. 23), the presence of a biplanar node such as

lowers the class by five reduces the equation of the surface to the form
zyw 42 +y*% —ar*=0.
Because the nodal plane #=0 contains but one disengaged ray (#=0, 2=0), only the
union of the fwo disengaged rays (y=0, 2’—a2’=0) in the other nodal plane can give
rise to a proper node. Hence the constant ¢ must vanish. The surface in question is
therefore represented by
xyw 422 +y2=0
in point-coordinates, and consequently by
O=27p"+ (86pgr+16¢°)s*+(pr°+ 8¢°r*)s +gr*=0

in plane-coordinates; 48s°@ is the discriminant of the binary cubic

12s2(par—+gy) + By(re—sy)*;
10850=(54ps*+ 867 +1°)"+(12gs—1°)"

and

The Hessian of the original cubic is 4{a%w+2%°—3ay’2+5'}. The spinode curve
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therefore breaks up into five times the axis (y=0, 2=0) joining the two nodes, four
times the nodal edge (=0, y=0), and a partial curve of the third degree, which may
be represented by

9% w| =0,
42, y, —52
or, which is the same thing, by y=2Az, z=2%;, w= —$A°», where A denotes a variable

number. Since the plane touching the original surface at this current point has the
equation
— 80 %2+ 3Ny +12a2 + 4w =0,

the spinode develope is represented by the vanishing of the discriminant of the binary
cubic (—8z, y, 42, 4w}, 1), that is to say, by

V=0642"w+ (48xyz+3°)w— 12822 — 3y°*=0;
and we have in fact
2y*V =(64ayw — 644> — 162’2+ y*)(xyw + 22* +y°2) + 2(4az—3* ),

which shows that the curve is contained three times in the intersection of the original
surface and the developable V=0. The cuspidal line of this developable is repre-

sented by
y=8\r, 2=—2\"2, w=22%,

and is therefore a partial curve of the third degree. The equation in plane-coordi-
nates of the spinode curve is

675p%s* +16pr*+ 360pgrs — 320¢°s—16¢°r*=0.
In point-coordinates the developable formed by the tangents of the spinode curve is
represented by the vanishing of the discriminant of the binary cubic
(10a, —5y, 10z, dw)n, 1)
Art. 39. On putting
U= z—hw+klz+hy), V=—y—hz—hke, W=—z+kz,
X=—z+hw+k(x+hy), Y= y+he—hkz, 7 = z+kz,
whence arise the identical relations
V+2W +Y +hZ=0 (holding three times),
U+4-rkV —(1+1E)W + X — kY — (1 —1*k)Z=0 (accidental),
the identical equation
UVW +XYZ=2hk{zyw+ (2 +hy)2* +y°2— B*a®— h*a’y },

when the constants A, £ are made to vanish, enables us to perceive what arrangement is
here undergone by the 27 lines and 45 triangle-planes of the general surface.
MDCCOLXIIL. 2K
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The edge (=0, y =0) unites vy, I , p, 7 , 10
the axis (y=0, z =0) unites wy, vx, vz, wy, m, n, 10
the ray (2=0, z =0) unites ux, wz, ¢, 5
the ray (2=0, w=0) unites uz, war, 2
' 27 lines.

The axis joining the two nodes thus unites five rays of the proper node.

Of the nodal planes, y=0 unites v, y, (uy), (vx), (v2), (wy), (Imn), 20 triangle-planes;
=0 unites (uz), (vy), (wz), (pgr), 15 triangle-planes; and the only plane containing an
actual triangle, z=0, unites u, w, @, 2, (uz), (wz), 10 triangle-planes; 20+4154-10=45.

The only disengaged ray of the proper node unites two independent lines of the
surface. The five lines intersecting both of these coincide in the disengaged ray of the
biplanar node. The ten lines meeting but one of the two original lines coincide in the
axis joining both nodes. And the ten remaining lines coincide in the edge of the
biplanar node. t

There is but one species, because all four linear functions @, 7, 2, w must be real.
XIV. 1.

XV. Cubic surface of the fifth class with a uniplanar node.

Art. 40. We have seen above that the cubic surface with a uniplanar node can
always be represented by an equation of the form a*w+P-+Qz, where P=(y, 2)},

Q=(y, #)%, and that, whenever P has no two equal factors, the uniplanar node BBTU for

itself lowers the class by six; but upon considering the case where P has two equal
factors, it appears that there is a further reduction of one, making the whole reduction
of class to be equal seven. We are here allowed to write P=g%; and the equation of
the surface accordingly is

2w +y’z+a(ay’ +2byz+c2*)=0
or, what is the same thing,
¥’[ew— ac(ac+0*)x —2abey — c(2ac+0*)z ]+ (y +bx)*(cz +acx) +a(cz + acx)*=0
or simply
rw+yz+a2*=0,
where all the variables are necessarily real. The equation in plane-coordinates arises
when the discriminant of (—3¢% ¢r, 2ps, 8¢sY{@, y)* is cleared of the factor 2¢%;
hence it is
—64p°s’—16p**s+ T2pg°rs+27¢'s+16¢°r*=0.

The Hessian of #*w-+y°2-+a2* is 16a*(#z—y*). Hence the spinode curve breaks up
into six times the double nodal ray (£=0, y==0), twice the simple nodal ray (2=0)
2=0), and once the complete curve (2z—y*=0, 2w +22°=0), which has the node for a
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double point, where the double nodal ray is a tangent common to both branches of the
curve.

Art. 41. Denoting by % a number which ultimately vanishes, the surface in question
may also be represented by the equation

2 (z4-PPw) —2(x+ hy)(x— hy— h*2)=0.

Hence we can see that there is but one simple line (2=0, w=0), and that all the ten
lines intersecting it coincide/in the simple nodal ray’(#=0, 2=0), while the double nodal
ray (#=0, y=0) unites all the sixteen remaining lines. Again, the plane z=0 unites
all the five triangle-planes that pass through the only simple line (2=0, w=0), and the
nodal plane =0 unites alone all the forty remaining triangle-planes.

There is but one species. XV. 1.

X VL. Cubic surface of the fourth class with four proper nodes.

Art. 42. If we choose the four nodes as points of reference, the equation of the surface
necessarily takes the form ayzw 4+ bazw + cxyw+dryz=0. None of the four constants
can vanish, unless the surface break up into a plane and a quadratic surface. We are
therefore at liberty to change #, y, 2, w respectively into ax, 8y, cz, dw, when the equa-
tion of the surface becomes

yzw 42w +xyw +xyz=0.
Since ,
_p:q:?:SZ‘w‘é . 5@ : 2 : b
we have

Vp+ Vot vr+ vs=0,
or in a rational form
(3p*—23pg) — B4pgrs=3p* — 43p’ + 6Zp’* + 4Zp’gr — 40pgrs=0,
as an equation in plane-coordinates.
The Hessian of Zyzw is

— 432z +yw)(ww +y2) = — 4SaPyz =4 {dayzw— S . Syzw}.
The spinode curve consequently breaks up into twice each axis (or edge of the tetra-

hedron of reference).
Art. 43. Trihedral-pair forms are, for instance,

(@+y)zw+(z+w)ry=0,
(2+9)(a+2)(o+w)—a(e-+y+2+w)=0.

The latter shows a transversal triangle-plane #+y+2z-+w=0, which is simple as con-

taining none of the four nodes. Its sides are the transversals of the axes; each of them

belongs to two opposite axes, as for instance (#+y=0, z+w=0), being the transversal

common to both singular tangent planes #+y=0 and z+4+w=0. The six singular

tangent planes lie harmonically in regard to the point #=y=2z=w. Let any plane

Ppr+gy+rz+sw=0 pass through this point, whence p+¢+7+s=0; then to this plane
2K 2
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will harmonically answer the point px=gy=rz=sw, and this will describe the surface
1.1 1 1
sty tzt5=0

while the plane turns about that fixed point.

The six axes count four times; the three transversals are simple; 64+ 3-1=27 lines.

The four planes each of which contains three nodes count eight times, the six singular
tangent planes count twice, the transversal plane is simple; together 4-8+46-241-1=45
triangle-planes.

There are three species; the transversal plane is always real.

1. Allis real. XVIL 1.

2. @, y are real, z, w conjugate. Two nodes are real, and two are conjugate. Two
axes and but one transversal are real. XVI. 2.

3. x, y are conjugate, and so also z, w. All four nodes are imaginary and conjugate
by pairs. Two axes and the three transversals are real. XVI. 3.

XVIL Cubic surface of the fourth class with two biplanar nodes and one proper node.
Art. 44. Such surface arises from the kind IX. when there 3=y. With a change
of letters
xyz+aw’+w*=0
(implying only fourteen constants) is a form to which the equation of such a surface can
always be reduced.

Let
R*=s"—12¢r,
then
P:(2s—R): (R—s)=(y2+w*): 3w?*: 22w,
whence

Ip(R—s)+2(R—2s)*=
or in a rational form

(s*44qr)*—ps*— 36pgrs+2Tp°qr=0
is the reciprocal equation of the surface.

The Hessian of the original cubic is 4a(ayz+ 3yzw-+aw’); consequently the spmode
curve breaks up into four times the axis joining both biplanar nodes, three times the
two other axes, and once the conic (4#+3w=0, 3yz—w*=0). Along this last conic
the cone (824 9w)*—27yz=0 osculates the surface.

The axis (=0, w=0) joining both biplanar nodes counts nine times, the two other
axes (w=0, yz=0) count six times, and the two disengaged rays of the biplanar nodes
(y=0, 24w=0) and (2=0, x4+w=0) count three times; 1-9+426+42-3=27 lines.

The plane w=0 passing through the three nodes counts eighteen times, the plane
x+w=0 counts nine times, and the three nodal planes count six times; in the whole
1-1841-9+8:6=45 triangle-planes.

Three species may be distinguished.
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1. Allisreal. XVIL 1.

2. y, z are conjugate. The two biplanar nodes are conjugate, and the cone of the
proper node is imaginary (it has but one real point). XVII. 2.

3. y and —z are conjugate. The two biplanar nodes are conjugate, and the cone of
the proper node is real. XVIIL. 3.

XVIIL Cubic surface of the fourth class with a biplanar node and two proper nodes.
Art. 45. The equation of the surface in point-coordinates is
zyw+ (2 +y)2*=0,
and in plane-coordinates it is
(p—afs+3(p+a)s+1sr' =0,
this last equation arising from the discriminant of the binary quadric
25(x+y) pa-+ay)+iray.
The Hessian of the original cubic is
4{(a+y)ryw+(x—y)2"}-
The spinode curve therefore breaks up into four times each of the lines joining the
biplanar node to the two proper nodes, twice the line joining both the proper nodes,

and twice the nodal edge.
Let %, k be numbers which ultimately vanish, and write

U=—w+2hk(z+y), V= z4hzx+ky, W= z—he—Fy,
X= w+2hk(z+y), Y=—z—ha+ky, Z=—z+he—Fy;
UVW + XYZ =4hk{zyw + (2 +y)(2*— 2> —E*)},
V+W+Y+7Z=0 (holding three times),

U—(h+E)V+(h+E)W +X—(h—Ek)Y + (h—k)Z=0 (accidental).

Then the lines are as follows, viz.

then

The axis (£=0, 2=0) unites vz, wy, m, n, 8
the axis (y=0, 2=0) unites vy, w2, ¢, 7, 8
the edge (x=0, y=0) unites /, p, 6
the axis (2=0, w=0) unites wy, uz, vx, wr, 4
the line (#+y=0, w=0) is uz, 1

27

the last-mentioned line uz being the transversal common to the nodal edge and the axis
joining the two proper nodes.

The plane of the three nodes z=0 unites v, w, ¥, 2, (uy), (w2), (vx), (W), sixteen
triangle-planes; the nodal planes count each of them twelve times, since #=0 unites
(vz), (wy), (Imn), and y=0 unites (vy), (wz), (pgr). Of the singular tangent planes, that
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along the nodal edge, #+y=0, unites (ux), three triangle-planes, and that through the
two proper nodes, w=0, unites %, , two triangle-planes. Inall164+1241243+4+2=45
triangle planes.

~ There are two species, according as &, y are real or conjugate. As an example of the
latter species, I may notice the surface generated by a variable circle the diameter
whereof is parallel to the axis of a fixed parabola and intercepted between this curve

and its tangent at the vertex, while the plane of the circle is perpendicular to that of
the parabola.

XIX. CQubic surface of the fourth class with a biplanar and a proper node.

Art. 46. Such a surface is represented ayw +x2’+7°=0 in point-coordinates, and by
64ps°+(4gs+7°)*=0 in plane-coordinates. ~The Hessian of the original cubic is
4x(xyw+ 22— 3y°), whence the spinode curve breaks up into six times the edge
(2=0, y=0) of the biplanar node and six times the axis (y=0, z=0) joining the two
nodes. -

From art. 34 it appears that the axis (y=0, 2=0) joining the two nodes unites the
twelve lines of a double six, and that the edge (=0, y=0) unites the fifteen remaining
lines, 12416=27 lines. Moreover it is plain that the axis unites all six rays of the
proper node. The nodal plane y=0 containing the proper node unites the thirty
triangle-planes immediately arising from the double six, and the osculating nodal plane
=0 unites all the fifteen remaining triangle-planes, 30-+15=45 triangle-planes.

The plane z=0 is not fixed, for we may also write

xy(w—202—1%y) +2(2+1y ) +5°=0.
The equation of the surface therefore implies but thirteen disposable constants.
There is but one species, because everything must be real. XIX. 1.

XX. Cubic surface of the fourth class with o wniplanar node.

Art. 47. When in the form #*w+P+Qx=0 of art. 40, P is a perfect cube, which we
may denote by y°, this equation can be reduced to a*w-+7°+42*=0. The equation

reciprocal to this is 27(4ps+7°)*—64¢%=0. Since we may also write the equation in
the form

2w+ 205—212) + 3+ 2(z—rx ) =0,
there is nothing to fix the positions of the planes #=0 and w=0; and the equation of
the surface implies only thirteen disposable constants.
The Hessian is 4827, and the spinode curve breaks up into ten times the line (#=0,

y=0) and once the conic section (y=0, aw+2°=0), along which the cone zw+22=0
osculates the surface.

- By the help of a constant A, which ultimately vanishes, we may represent the surface
here considered in the form of art. 40,

(=22 =Ry~ 3z +1ow) + (0 — Wy V(2 + Ry + Fs) + 2z + Py +h2) =0,
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whence we see that here all the twenty-seven lines of the general surface coincide in the
line (#=0, y=0), and all the forty-five triangle-planes in the plane £=0.
There is but one species. XX. 1.

7 XXI. Cubic surface of the third class with three biplanar nodes.

Art. 48. The equation is 2yz+w*=0 in point-coordinates, and 27pgr—s*=0 in plane-
coordinates. The Hessian is 122yzw ; hence the spinode curve breaks up into four times
the three axes: ‘

The three axes, as counting each for nine lines, unite all the twenty-seven lines of
the surface, and this distribution of them into three groups of nine lines answers to a
triad of trihedral-pairs*. The plane w=0 of the three nodes counts for twenty-seven
triangle-planes, and each of the singular osculating planes #=0, y=0, s=0 counts for
six triangle-planes, 27464-6-46=45 triangle-planes.

There are two species (if 2, w be supposed to be real), according as y, z are rea.l or
conjugate. XXI.1; XXI. 2.

XXII. Ruled surface of the third order and third class.

Art. 49. Let us imagine a continuous system of straight lines forming a surface of
the nth order, and take at pleasure any one of these lines as an axis about which we
turn an intersecting plane. The section will then consist of the axis itself and a plane
curve of the (n—1)th order, which, of course, intersects the axis in #—1 points. But
of these one alone can move, while the #—2 remaining intersections must be fixed. For
the plane cuts an indefinitely near (or consecutive) straight line of the system in only
one point, and this alone moves. Should any one of the other intersections also move,
the axis would be a double line of the surface, whereas it was taken at hazard. Because
then the n—2 remaining intersections on the axis are fixed, they must arise from a
double line of the surface, such double line being met by every generating line in 7 —2
points. Again, to investigate the class of this surface we take an arbitrary line in space;
it will intersect the surfacein» points, and therefore meet the same number of generating
lines. FEach plane passing through the arbitrary line and one of these n generating
lines will be a tangent plane to the surface. And since there are no other tangent
planes than such as pass through a generating line, therefore the class of the surface is
equal to its order.

Art. 80. For n=3 the double line cannot be a curve; for else an arbitrary plane
section of the surface would have two double points at least, and would therefore consist
of a straight line and a conic section; but this cannot be the case, unless the surface
break up into a plane and a quadratic surface. The double line must therefore be a
straight line. Again, since through any point of it there pass (in general) two distinct
generating lines, the plane of these two lines must besides cut the surface in a third
line (not belonging to the system of generating lines), and this will meet all the gene-

* See Quart. Math. Journal, vol. ii. p. 114.
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rating lines. For if we turn a plane about it, the section will always break up into
this line itself and a quadratic curve having a double point on the double line of the
surface; in other words, the section will be a triangle whereof the vertex moves along
the double line, while the two sides are current generating lines, and the base rests on
a straight line fixed in position*, which we shall term the fransversal. It plays the
part of the node-couple-develope, since every plane passing through it touches the
surface in two points away from the double line, whereas every plane passing through a
generating line touches the surface in only one point away from the double line.

Suppose now that there pass through the double line the planes =0, y=0, and
through the transversal the planes #=0, w=0. Then the equation of the surface will
assume the form Mz-+Nw=0, and for indefinitely small values of «, ¥ this cubic must
become of the second order. Therefore M, N cannot contain 2, w, but must be of the
form (2, ), whence the equation may also be presented in the form Aa*+42Bay -+ Cy*=0,
where A, B, C mean homogeneous linear functions of z, w. If then we inquire for
what value of the ratio :w this equation gives two equal values to the ratio «:y, the
corresponding condition AC—B? is of the second degree in respect to the ratio required.
Hence there lie on the double line only two uniplanar nodesf. We are allowed to let
pass through them respectively the planes s=0, w=0. But then M, N are perfect
squares, and we are also at liberty to represent them by —3?, 2% so that now the equation
of the surface becomes

2"w—y'z=0.
Since it obviously implies only thirteen constants, the existence of a double line counts
in the cubic surface for siz conditions. The system y=A4x, w=2"z, where A is an arbitrary
parameter, shows the generating line in movement, and affords an easy geometrical con-
struction of the surface, which I think it is not necessary to explain.

The equation reciprocal to #*w—y’2=0 is p®s+¢°»=0; hence the surface keeps its
properties, though point and plane be interchanged. ‘

The Hessian is —162%% The spinode curve therefore breaks up into eight times
the double line and twice the generating lines which pass through the uniplanar nodes
and along which the surface is touched by the two singular tangent planes =0 and
w=0.

There are two species, according as the two uniplanar nodes are real or conjugate. In
the first species #, 7, %, w are real, and whenever the ratio z: w is negative, the ratio #:y
becomes lateral. In other words, when the double line between the two uniplanar

# The same thing might also be thus proved. Take any four distinct generating lines; they will in general
not lie on a quadraticsurface, and, because they are already intersected by the straight double line of the surface,
there will be a second straight line intersecting all of them. But since this now has four points in common with
the cubic surface, it must lie wholly in the surface.

The problem of drawing through a given generating line a triangle-plane is of the fifth degree, and it may be
foreseen that the plane passing through it and the transversal is a single solution ; the four remaining solutions
must all coincide in the plane passing through the given line and the double line.

+ In the language of Dr. Sarmoxn and myself, cuspidal points.—A. C.
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nodes is contiguous with the rest of the surface, then it is isolated without them; and

when isolated within, then it is contiguous without. The two planes through the trans-

- versal and one of the uniplanar nodes are singular tangent planes, and both real. XXII. 1.
In the second species we may assume w conjugate to —z and 7 to x, and write

(x+iy)*(z+iw)+ (x—y)*(z—iw)=0,
or, what is the same thing,
(@ —y)z—22yw=0,
whence arises the system
(w=nz, a*—2nzy—1*=0),
which for all real values of A gives also real values to the ratio #:y. The double line is
therefore throughout contiguous to the rest of the surface, and the two singular tangent
planes are conjugate. XXIL 2.

[Dr. ScHLAFLI has omitted to notice a special form of the ruled surface of the third
order which presented itself to me, and which I communicated to M. CrEMONA and
Dr. Satmon, and which is in fact that in which the transversal coincides with the
double line. For this species, say XXII. 3, the equation may be taken to be

o+ (22 +wy)=0 :
see SALMON’S ¢Geometry of Three Dimensions,” pp. 378, 379, where however in the
construction of the surface a necessary condition was (by an oversight of mine) omitted.
The correct construction is as follows, viz., Given a cubic curve having a double point,
and a line meeting the curve in this point (the double line of the surface); if on
the line we have a series of points, and through the line a series of planes, corresponding
anharmonically to each other, and such that to the double point considered as a point of
the line, there corresponds the plane through one of the tangents at the double point, then
the line drawn through a point (of the double line), and in the corresponding plane, to
meet the cubic, generates the surface. The special form in question must, however, have
been familiar to M. CHASLES, as I find it alluded to in the foot-note, p. 188, to a paper
by him, ¢ Description des Courbes, &c.,” Comptes Rendus, 18 November 1861.—A. C.]
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